ﻻ يوجد ملخص باللغة العربية
Analysis of high spatial resolution VLA images shows that the free-free emission from NGC7538 IRS1 is dominated by a collimated ionized wind. We have re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured separately the flux density from the compact bipolar core and the extended (1.5 - 3) lobes. We find that the flux density of the core is proportional to the frequency to the power of alpha, with alpha being about 0.7. The frequency dependence of the total flux density is slightly steeper with alpha = 0.8. A massive optically thick hypercompact core with a steep density gradient can explain this frequency dependence, but it cannot explain the extremely broad recombination line velocities observed in this source. Neither can it explain why the core is bipolar rather than spherical, nor the observed decrease of 4% in the flux density in less than 10 years. An ionized wind modulated by accretion is expected to vary, because the accretion flow from the surrounding cloud will vary over time. BIMA and CARMA continuum observations at 3 mm show that the free-free emission still dominates at 3 mm. HCO+ J = 1 - 0 observations combined with FCRAO single dish data show a clear inverse P Cygni profile towards IRS1. These observations confirm that IRS1 is heavily accreting with an accretion rate of about 2 times 10(-4) solar masses per year.
NGC 7538 IRS 1 is a very young embedded O star driving an ionized jet and accreting mass with an accretion rate > 10^-4 Msun/year, which is quenching the hypercompact HII region. We use SOFIA GREAT data, Herschel PACS and SPIRE archive data, SOFIA FO
Spectral lines from formaldehyde (H2CO) molecules at cm wavelengths are typically detected in absorption and trace a broad range of environments, from diffuse gas to giant molecular clouds. In contrast, thermal emission of formaldehyde lines at cm wa
NGC7538 IRS1 is considered the best high-mass accretion disk candidate around an O-type young star in the northern hemisphere. We investigated the 3D kinematics and dynamics of circumstellar gas with very high linear resolution, from tens to 1500 AU,
To constrain theoretical models of high-mass star formation, observational signatures of mass accretion in O-type forming stars are desirable. Using the JVLA, we have mapped the hot and dense molecular gas in the hot core NGC7538 IRS1, with 0.2 angul
The explosive outflows are a newly-discovered family of molecular outflows associated with high-mass star forming regions. Such energetic events are possibly powered by the release of gravitational energy related with the formation of a (proto)stella