ﻻ يوجد ملخص باللغة العربية
Using the data obtained with the Spitzer Space telescope as part of the Surveying the Agents of a Galaxys Evolution (SAGE) legacy survey, we have studied the variations of the dust composition and abundance across the Large Magellanic Cloud (LMC). Such variations are expected, as the explosive events which have lead to the formation of the many HI shells observed should have affected the dust properties. Using a model and comparing with a reference spectral energy distribution from our Galaxy, we deduce the relative abundance variations of small dust grains across the LMC. We examined the infrared color ratios as well as the relative abundances of very small grains (VSGs) and polycyclic aromatic hydrocarbons (PAHs) relative to the big grain (BG) abundance. Results show that each dust component could have different origins or evolution in the interstellar medium (ISM). The VSG abundance traces the star formation activity and could result from shattering of larger grains, whereas the PAH abundance increases around molecular clouds as well as in the stellar bar, where they could have been injected into the ISM during mass loss from old stars.
In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) a
Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC~1718 are presented, based on high resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NG
The HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) of the Magellanic Clouds will use dust emission to investigate the life cycle of matter in both the Large and Small Magellanic Clouds (LMC and SMC). Using the Herschel Space Observat
We derive the spatially-resolved star formation history (SFH) for a $96$ deg$^2$ area across the main body of the Large Magellanic Cloud (LMC), using the near-infrared photometry from the VISTA survey of the Magellanic Clouds (VMC). The data and anal
We investigate spatial variations of turbulent properties in the Small Magellanic Cloud (SMC) by using neutral hydrogen HI observations. With the goal of testing the importance of stellar feedback on HI turbulence, we define central and outer SMC reg