Societys view of astronomers has changed over time and from culture to culture. This review discusses some of the many ways that astronomers have been perceived by their societies and suggests ways that astronomers can influence public perception of ourselves and our profession in the future.
Some 400 years after Galileo, modern telescopes have enabled humanity to see what the natural eye cannot. Astronomical images today contain information about incredibly large objects located across vast distances and reveal information found in invis
ible radiation ranging from radio waves to X-rays. The current generation of telescopes has created an explosion of images available for the public to explore. This has, importantly, coincided with the maturation of the Internet. Every major telescope has a web site, often with an extensive gallery of images. New and free downloadable tools exist for members of the public to explore astronomical data and even create their own images. In short, a new era of an accessible universe has been entered, in which the public can participate and explore like never before. But there is a severe lack of scholarly and robust studies to probe how people - especially non-experts - perceive these images and the information they attempt to convey. Most astronomical images for the public have been processed (e.g., color choices, artifact removal, smoothing, cropping/field-of-view shown) to strike a balance between the science being highlighted and the aesthetics designed to engage the public. However, the extent to which these choices affect perception and comprehension is, at best, poorly understood. The goal of the studies presented here was to begin a program of research to better understand how people perceive astronomical images, and how such images, and the explanatory material that accompanies them, can best be presented to the public in terms of understanding, appreciation, and enjoyment of the images and the science that underlies them.
On 21 April 2018, the citizens of Wako, Japan, interacted in a novel way with research being carried out at the Astrophysical Big Bang Laboratory (ABBL) at RIKEN. They were able to explore a model of a supernova and its remnant in an immersive three-
dimentional format by using virtual reality (VR) technology. In this article, we explain how this experience was developed and delivered to the public, providing practical tips for and reflecting on the successful organisation of an event of this kind.
I analyze the postdoctoral career tracks of a nearly-complete sample of astronomers from 28 United States graduate astronomy and astrophysics programs spanning 13 graduating years (N=1063). A majority of both men and women (65% and 66%, respectively)
find long-term employment in astronomy or closely-related academic disciplines. No significant difference is observed in the rates at which men and women are hired into these jobs following their PhDs, or in the rates at which they leave the field. Applying a two-outcome survival analysis model to the entire data set, the relative academic hiring probability ratio for women vs. men at a common year post-PhD is H_(F/M) = 1.08 (+0.20, -0.17; 95% CI); the relative leaving probability ratio is L_(F/M) = 1.03 (+0.31, -0.24). These are both consistent with equal outcomes for both genders (H_(F/M) = L_(F/M) = 1) and rule out more than minor gender differences in hiring or in the decision to abandon an academic career. They suggest that despite discrimination and adversity, women scientists are successful at managing the transition between PhD, postdoctoral, and faculty/staff positions.
While both society and astronomy have evolved greatly over the past fifty years, the academic institutions and incentives that shape our field have remained largely stagnant. As a result, the astronomical community is faced with several major challen
ges, including: (1) the training that we provide does not align with the skills that future astronomers will need, (2) the postdoctoral phase is becoming increasingly demanding and demoralizing, and (3) our jobs are increasingly unfriendly to families with children. Solving these problems will require conscious engineering of our profession. Fortunately, this Decadal Review offers the opportunity to revise outmoded practices to be more effective and equitable. The highest priority of the Subcommittee on the State of the Profession should be to recommend specific, funded activities that will ensure the field meets the challenges we describe.
Whether to give rights to artificial intelligence (AI) and robots has been a sensitive topic since the European Parliament proposed advanced robots could be granted electronic personalities. Numerous scholars who favor or disfavor its feasibility hav
e participated in the debate. This paper presents an experiment (N=1270) that 1) collects online users first impressions of 11 possible rights that could be granted to autonomous electronic agents of the future and 2) examines whether debunking common misconceptions on the proposal modifies ones stance toward the issue. The results indicate that even though online users mainly disfavor AI and robot rights, they are supportive of protecting electronic agents from cruelty (i.e., favor the right against cruel treatment). Furthermore, peoples perceptions became more positive when given information about rights-bearing non-human entities or myth-refuting statements. The style used to introduce AI and robot rights significantly affected how the participants perceived the proposal, similar to the way metaphors function in creating laws. For robustness, we repeated the experiment over a more representative sample of U.S. residents (N=164) and found that perceptions gathered from online users and those by the general population are similar.