ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on ``Muon-spin rotation studies of the superconducting properties of Mo_3Sb_7, Phys.Rev.B 78, 172505 (2008)

231   0   0.0 ( 0 )
 نشر من قبل Rustem Khasanov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent article Tran et al. [Phys. Rev.B 78, 172505 (2008)] report on the result of the muon-spin rotation (muSR) measurements of Mo_3Sb_7 superconductor. Based on the analysis of the temperature and the magnetic field dependence of the Gaussian relaxation rate sigma_{sc} they suggest that Mo_3Sb_7 is the superconductor with two isotropic s-wave like gaps. An additional confirmation was obtained from the specific heat data published earlier by partly the same group of authors in [Acta Mater. 56, 5694 (2008)]. The purpose of this Comment is to point out that from the analysis made by Tran et al. the presence of two superconducting energy gaps in Mo_3Sb_7 can not be justified. The analysis of muSR data does not account for the reduction of sigma_{sc} with increasing temperature, and, hence, yields inaccurate information on the magnetic penetration depth. The specific heat data can be satisfactory described within the framework of the one-gap model with the small residual specific heat component. The experimental data of Tran et al., as well as our earlier published muSR data [Phys. Rev. B 78, 014502 (2008)] all seem to be consistent with is the presence of single isotropic superconducting energy gap in Mo_3Sb_7.



قيم البحث

اقرأ أيضاً

In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small gra in 1.5 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. Results of the muSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing (BCP) performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR. The muSR line width observed in ZF-muSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. An upper bound for the upper critical field Hc2 of these cutouts is found.
Measurements of the in-plane magnetic field penetration depth lambda_{ab} in Fe-based superconductors with the nominal composition SmFeAsO_0.85 (T_csimeq52K) and NdFeAsO_0.85 (T_csimeq51K) were carried out by means of muon-spin-rotation. The absolute values of lambda_{ab} at T=0 were found to be 189(5)nm and 195(5)nm for Sm and Nd substituted samples, respectively. The analysis of the magnetic penetration depth data within the Uemura classification scheme, which considers the correlation between the superconducting transition temperature T_c and the effective Fermi temperature T_F, reveal that both families of Fe-based superconductors (with and without fluorine) falls to the same class of unconventional superconductors.
The superconducting properties of Sn1-xInxTe (x = 0.38 to 0.45) have been studied using magnetization and muon-spin rotation or relaxation (muSR) measurements. These measurements show that the superconducting critical temperature Tc of Sn1-xInxTe inc reases with increasing x, reaching a maximum at around 4.8 K for x = 0.45. Zero-field muSR results indicate that time-reversal symmetry is preserved in this material. Transverse-field muon-spin rotation has been used to study the temperature dependence of the magnetic penetration depth lambda(T) in the mixed state. For all the compositions studied, lambda(T) can be well described using a single-gap s-wave BCS model. The magnetic penetration depth at zero temperature lambda(0) ranges from 500 to 580 nm. Both the superconducting gap Delta(0) at 0 K and the gap ratio Delta(0)/kBTc indicate that Sn1-xInxTe (x = 0.38 to 0.45) should be considered as a superconductor with intermediate to strong coupling.
Appearance of strong spin-orbit coupling (SOC) is apparent in ternary equiatomic compounds with 5$d$-electrons due to the large atomic radii of transition metals. SOC plays a significant role in the emergence of unconventional superconductivity. Here we examined the superconducting state of HfIrSi using magnetization, specific heat, zero and transverse-field (ZF/TF) muon spin relaxation/rotation ($mu$SR) measurements. Superconductivity is observed at $T_mathrm{C}$ = 3.6 K as revealed by specific heat and magnetization measurements. From the TF$-mu$SR analysis it is clear that superfluid density well described by an isotropic BCS type $s$-wave gap structure. Furthermore, from TF$-mu$SR data we have also estimated the superconducting carrier density $n_mathrm{s}$ = 6.6 $times$10$^{26}$m$^{-3}$, London penetration depth $lambda_{L}(0)$ = 259.59 nm and effective mass $m^{*}$ = 1.57 $m_{e}$. Our zero-field muon spin relaxation data indicate no clear sign of spontaneous internal field below $T_mathrm{C}$, which implies that the time-reversal symmetry is preserved in HfIrSi. Theoretical investigation suggests Hf and Ir atoms hybridize strongly along the $c$-axis of the lattice, which is responsible for the strong three-dimensionality of this system which screens the Coulomb interaction. As a result despite the presence of correlated $d$-electrons in this system, the correlation effect is weakened, promoting electron-phonon coupling to gain importance.
Local magnetic field distribution B(r) in the mixed state of a boride superconductor, YB6, is studied by muon spin rotation (muSR). A comparative analysis using the modified London model and Ginzburg-Landau (GL) model indicates that the GL model exhi bits better agreement with muSR data at higher fields, thereby demonstrating the importance of reproducing the field profile near the vortex cores when the intervortex distance becomes closer to the GL coherence length. The temperature and field dependence of magnetic penetration depth ($lambda$) does not show any hint of nonlocal effect nor of low-lying quasiparticle excitation. This suggests that the strong coupling of electrons to the rattling motion of Y ions in the boron cage suggested by bulk measurements gives rise to a conventional superconductivity with isotropic s-wave pairing. Taking account of the present result, a review is provided for probing the anisotropy of superconducting order parameters by the slope of $lambda$ against field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا