First-Passage Kinetic Monte Carlo method


الملخص بالإنكليزية

We present a new efficient method for Monte Carlo simulations of diffusion-reaction processes. First introduced by us in [Phys. Rev. Lett., 97:230602, 2006], the new algorithm skips the traditional small diffusion hops and propagates the diffusing particles over long distances through a sequence of super-hops, one particle at a time. By partitioning the simulation space into non-overlapping protecting domains each containing only one or two particles, the algorithm factorizes the N-body problem of collisions among multiple Brownian particles into a set of much simpler single-body and two-body problems. Efficient propagation of particles inside their protective domains is enabled through the use of time-dependent Greens functions (propagators) obtained as solutions for the first-passage statistics of random walks. The resulting Monte Carlo algorithm is event-driven and asynchronous; each Brownian particle propagates inside its own protective domain and on its own time clock. The algorithm reproduces the statistics of the underlying Monte-Carlo model exactly. Extensive numerical examples demonstrate that for an important class of diffusion-reaction models the new algorithm is efficient at low particle densities, where other existing algorithms slow down severely.

تحميل البحث