ﻻ يوجد ملخص باللغة العربية
We investigate dynamical coupling timescales of a neutron stars superfluid core, taking into account the interactions of quantized neutron vortices with quantized flux lines of the proton superconductor in addition to the previously considered scattering of the charged components against the spontaneous magnetization of the neutron vortex line. We compare the cases where vortex motion is constrained in different ways by the array of magnetic flux tubes associated with superconducting protons. This includes absolute pinning to and creep across a uniform array of flux lines. The effect of a toroidal arrangement of flux lines is also considered. The inclusion of a uniform array of flux tubes in the neutron star core significantly decreases the timescale of coupling between the neutron and proton fluid constituents in all cases. For the toroidal component, creep response similar to that of the inner crust superfluid is possible.
Mature neutron stars are cold enough to contain a number of superfluid and superconducting components. These systems are distinguished by the presence of additional dynamical degrees of freedom associated with superfluidity. In order to consider mode
The quantization of vortex lines in superfluids requires the introduction of their density $C L(B r,t)$ in the description of quantum turbulence. The space homogeneous balance equation for $C L(t)$, proposed by Vinen on the basis of dimensional and p
This is a Reply to Nemirovskii Comment [Phys. Rev. B 94, 146501 (2016)] on the Khomenko et al, [Phys.Rev. B v.91, 180504(2016)], in which a new form of the production term in Vinens equation for the evolution of the vortex-line density $cal L$ in the
We study the effect of superfluidity on the tidal response of a neutron star in a general relativistic framework. In this work, we take a dual-layer approach where the superfluid matter is confined in the core of the star. Then, the superfluid core i
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in princ