ﻻ يوجد ملخص باللغة العربية
It is well known that jointly measurable observables cannot lead to a violation of any Bell inequality - independent of the state and the measurements chosen at the other site. In this letter we prove the converse: every pair of incompatible quantum observables enables the violation of a Bell inequality and therefore must remain incompatible within any other no-signaling theory. While in the case of von Neumann measurements it is sufficient to use the same pair of observables at both sites, general measurements can require different choices. The main result is obtained by showing that for arbitrary dimension the CHSH inequality provides the Lagrangian dual of the characterization of joint measurability. This leads to a simple criterion for joint measurability beyond the known qubit case.
It was shown by Bell that no local hidden variable model is compatible with quantum mechanics. If, instead, one permits the hidden variables to be entirely non-local, then any quantum mechanical predictions can be recovered. In this paper, we conside
Leggett and Garg derived inequalities that probe the boundaries of classical and quantum physics by putting limits on the properties that classical objects can have. Historically, it has been suggested that Leggett-Garg inequalities are easily violat
Maximum likelihood principle is shown to be the best measure for relating the experimental data with the predictions of quantum theory.
Colbeck and Renner [arXiv:0801.2218] analyzed a class of combined models for entanglements in which local and non-local hidden variables cooperate for producing the measurement results. They came to the conclusion that the measurement results are ful
We introduce the class of Genuinely Local Operation and Shared Randomness (LOSR) Multipartite Nonlocal correlations, that is, correlations between N parties that cannot be obtained from unlimited shared randomness supplemented by any composition of (