ترغب بنشر مسار تعليمي؟ اضغط هنا

Web 2.0 OLAP: From Data Cubes to Tag Clouds

242   0   0.0 ( 0 )
 نشر من قبل Daniel Lemire
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Increasingly, business projects are ephemeral. New Business Intelligence tools must support ad-lib data sources and quick perusal. Meanwhile, tag clouds are a popular community-driven visualization technique. Hence, we investigate tag-cloud views with support for OLAP operations such as roll-ups, slices, dices, clustering, and drill-downs. As a case study, we implemented an application where users can upload data and immediately navigate through its ad hoc dimensions. To support social networking, views can be easily shared and embedded in other Web sites. Algorithmically, our tag-cloud views are approximate range top-k queries over spontaneous data cubes. We present experimental evidence that iceberg cuboids provide adequate online approximations. We benchmark several browser-oblivious tag-cloud layout optimizations.



قيم البحث

اقرأ أيضاً

Increasingly, business projects are ephemeral. New Business Intelligence tools must support ad-lib data sources and quick perusal. Meanwhile, tag clouds are a popular community-driven visualization technique. Hence, we investigate tag-cloud views wit h support for OLAP operations such as roll-ups, slices, dices, clustering, and drill-downs. As a case study, we implemented an application where users can upload data and immediately navigate through its ad hoc dimensions. To support social networking, views can be easily shared and embedded in other Web sites. Algorithmically, our tag-cloud views are approximate range top-k queries over spontaneous data cubes. We present experimental evidence that iceberg cuboids provide adequate online approximations. We benchmark several browser-oblivious tag-cloud layout optimizations.
Data stored in a data warehouse are inherently multidimensional, but most data-pruning techniques (such as iceberg and top-k queries) are unidimensional. However, analysts need to issue multidimensional queries. For example, an analyst may need to se lect not just the most profitable stores or--separately--the most profitable products, but simultaneous sets of stores and products fulfilling some profitability constraints. To fill this need, we propose a new operator, the diamond dice. Because of the interaction between dimensions, the computation of diamonds is challenging. We present the first diamond-dicing experiments on large data sets. Experiments show that we can compute diamond cubes over fact tables containing 100 million facts in less than 35 minutes using a standard PC.
188 - Marouane Hachicha 2008
With the rise of XML as a standard for representing business data, XML data warehouses appear as suitable solutions for Web-based decision-support applications. In this context, it is necessary to allow OLAP analyses over XML data cubes (XOLAP). Thus , XQuery extensions are needed. To help define a formal framework and allow much-needed performance optimizations on analytical queries expressed in XQuery, having an algebra at ones disposal is desirable. However, XOLAP approaches and algebras from the literature still largely rely on the relational model and/or only feature a small number of OLAP operators. In opposition, we propose in this paper to express a broad set of OLAP operators with the TAX XML algebra.
Arguably data is the new natural resource in the enterprise world with an unprecedented degree of proliferation. But to derive real-time actionable insights from the data, it is important to bridge the gap between managing the data that is being upda ted at a high velocity (i.e., OLTP) and analyzing a large volume of data (i.e., OLAP). However, there has been a divide where specialized solutions were often deployed to support either OLTP or OLAP workloads but not both; thus, limiting the analysis to stale and possibly irrelevant data. In this paper, we present Lineage-based Data Store (L-Store) that combines the real-time processing of transactional and analytical workloads within a single unified engine by introducing a novel lineage-based storage architecture. By exploiting the lineage, we develop a contention-free and lazy staging of columnar data from a write-optimized form (suitable for OLTP) into a read-optimized form (suitable for OLAP) in a transactionally consistent approach that also supports querying and retaining the current and historic data. Our working prototype of L-Store demonstrates its superiority compared to state-of-the-art approaches under a comprehensive experimental evaluation.
As tremendous amount of data being generated everyday from human activity and from devices equipped with sensing capabilities, cloud computing emerges as a scalable and cost-effective platform to store and manage the data. While benefits of cloud com puting are numerous, security concerns arising when data and computation are outsourced to a third party still hinder the complete movement to the cloud. In this paper, we focus on the problem of data privacy on the cloud, particularly on access controls over stream data. The nature of stream data and the complexity of sharing data make access control a more challenging issue than in traditional archival databases. We present Streamforce - a system allowing data owners to securely outsource their data to the cloud. The owner specifies fine-grained policies which are enforced by the cloud. The latter performs most of the heavy computations, while learning nothing about the data. To this end, we employ a number of encryption schemes, including deterministic encryption, proxy-based attribute based encryption and sliding-window encryption. In Streamforce, access control policies are modeled as secure continuous queries, which entails minimal changes to existing stream processing engines, and allows for easy expression of a wide-range of policies. In particular, Streamforce comes with a number of secure query operators including Map, Filter, Join and Aggregate. Finally, we implement Streamforce over an open source stream processing engine (Esper) and evaluate its performance on a cloud platform. The results demonstrate practical performance for many real-world applications, and although the security overhead is visible, Streamforce is highly scalable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا