ترغب بنشر مسار تعليمي؟ اضغط هنا

The edge of the M87 halo and the kinematics of the diffuse light in the Virgo cluster core

105   0   0.0 ( 0 )
 نشر من قبل Payel Das
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high resolution FLAMES/VLT spectroscopy of intracluster planetary nebula (ICPN) candidates, targeting three new fields in the Virgo cluster core with surface brightness down to mu_B = 28.5. Based on the projected phase space information we separate the old and 12 newly-confirmed PNs into galaxy and intracluster components. The M87 PNs are confined to the extended stellar envelope of M87, within a projected radius of ~ 160 kpc, while the ICPNs are scattered across the whole surveyed region between M87 and M86. The velocity dispersions determined from the M87 PNs at projected radii of 60 kpc and 144 kpc show that the galaxys velocity dispersion profile decreases in the outer halo, down to 78 +/- 25 km/s. A Jeans model for the M87 halo stars in the gravitational potential traced by the X-ray emission fits the observed velocity dispersion profile only if the stellar orbits are strongly radially anisotropic (beta ~= 0.4 at r ~= 10 kpc increasing to 0.8 at the outer edge), and if additionally the stellar halo is truncated at ~= 150 kpc average elliptical radius. From the spatial and velocity distribution of the ICPNs we infer that M87 and M86 are falling towards each other and that we may be observing them just before the first close pass. The inferred luminosity-specific PN numbers for the M87 halo and the ICL are in the range of values observed for old (> 10 Gyr) stellar populations (abridged).



قيم البحث

اقرأ أيضاً

We present the discovery of diffuse optical line emission in the Centaurus cluster seen with the MUSE IFU. The unparalleled sensitivity of MUSE allows us to detect the faint emission from these structures which extend well beyond the bounds of the pr eviously known filaments. Diffuse structures (emission surrounding the filaments, a northern shell and an extended Halo) are detected in many lines typical of the nebulae in cluster cores ([NII]$_{lambda 6548&6583}$ ,[SII]$_{lambda 6716&6731}$, [OI]$_{lambda 6300}$, [OIII]$_{lambda 4959&5007}$ etc.) but are more than an order of magnitude fainter than the filaments, with the faint halo only detected through the brightest line in the spectrum ([NII]$_{lambda 6583}$). These structures are shown to be kinematically distinct from the stars in the central galaxy and have different physical and excitation states to the filaments. Possible origins are discussed for each structure in turn and we conclude that shocks and/or pressure imbalances are resulting in gas dispersed throughout the cluster core, formed from either disrupted filaments or direct cooling, which is not confined to the bright filaments.
We compare the distribution of diffuse intracluster light detected in the Virgo Cluster via broadband imaging with that inferred from searches for intracluster planetary nebulae (IPNe). We find a rough correspondence on large scales (~ 100 kpc) betwe en the two, but with very large scatter (~ 1.3 mag/arcsec^2). On smaller scales (1 -- 10 kpc), the presence or absence of correlation is clearly dependent on the underlying surface brightness. On these scales, we find a correlation in regions of higher surface brightness (mu_V < ~27) which are dominated by the halos of large galaxies such as M87, M86, and M84. In those cases, we are likely tracing PNe associated with galaxies rather than true IPNe. In true intracluster fields, at lower surface brightness, the correlation between luminosity and IPN candidates is much weaker. While a correlation between broadband light and IPNe is expected based on stellar populations, a variety of statistical, physical, and methodological effects can act to wash out this correlation and explain the lack of a strong correlation at lower surface brightness found here. [abridged]
We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray Timing Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 gala xy NGC4388. Thermal emission from Virgos intracluster medium is clearly detected and has a spectrum indicative of kT=2.5keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma_core>1.90$ and Gamma_jet>1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.
Intra-cluster (IC) populations are expected to be a natural result of the hierarchical assembly of clusters, yet their low space densities make them difficult to detect and study. We present the first definitive kinematic detection of an IC populatio n of globular clusters (GCs) in the Virgo cluster, around the central galaxy, M87. This study focuses on the Virgo core for which the combination of NGVS photometry and follow-up spectroscopy allows us to reject foreground star contamination and explore GC kinematics over the full Virgo dynamical range. The GC kinematics changes gradually with galactocentric distance, decreasing in mean velocity and increasing in velocity dispersion, eventually becoming indistinguishable from the kinematics of Virgo dwarf galaxies at $mathrm{R>320, kpc}$. By kinematically tagging M87 halo and intra-cluster GCs we find that 1) the M87 halo has a smaller fraction ($52pm3%$) of blue clusters with respect to the IC counterpart ($77pm10%$), 2) the $(g-r)_{0}$ vs $(i-z)_{0}$ color-color diagrams reveal a galaxy population that is redder than the IC population that may be due to a different composition in chemical abundance and progenitor mass, and 3) the ICGC distribution is shallower and more extended than the M87 GCs, yet still centrally concentrated. The ICGC specific frequency, $S_{N,mathrm{ICL}}=10.2pm4.8$, is consistent with what is observed for the population of quenched, low-mass galaxies within 1~Mpc from the clusters center. The IC population at Virgos center is thus consistent with being an accreted component from low-mass galaxies tidally stripped or disrupted through interactions, with a total mass of $mathrm{M_{ICL,tot}=10.8pm0.1times10^{11}M_{odot}}$.
The origin of ultra-compact dwarfs (UCDs)--objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies--has been hotly debated in the 15 years since their discovery. Even whether UCDs should be c onsidered galactic in origin, or simply the most extreme GCs, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs (rh >~10 pc) and 911 GCs associated with central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M_star > ~2X10^6 M_sun and 92% are as blue as the classic blue GCs, nearly triple the sample of previous confirmed Virgo UCDs, providing by far the best opportunity for studying the global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of the blue GCs in the inner ~ 70 kpc and as steep as that of the red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than the GCs, and the blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have a radially increasing orbital anisotropy profile, and are tangentially-biased at radii < ~ 40 kpc and radially-biased further out. In contrast, the blue GCs become more tangentially-biased at larger radii beyond ~ 40 kpc; (4) GCs with M_star > 2X10^6 M_sun have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially-biased orbital structure of UCDs at large radii is in general agreement with the tidally threshed dwarf galaxy scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا