ﻻ يوجد ملخص باللغة العربية
We re-examine the well-known discrepancy between ionic abundances determined via the analysis of recombination lines (RLs) and collisionally excited lines (CELs). We show that abundance variations can be mimicked in a {it chemically homogeneous} medium by the presence of dense X-ray irradiated regions which present different ionisation and temperature structures from those of the more diffuse medium they are embedded in, which is predominantly ionised by extreme-ultraviolet radiation. The presence of X-ray ionised dense clumps or filaments also naturally explains the lower temperatures often measured from O {sc ii} recombination lines and from the Balmer jump when compared to temperatures determined by CELs. We discuss the implications for abundances determined via the analysis of CELs and RLs and provide a simple analytical procedure to obtain upwards corrections for CEL-determined abundance. While we show that the abundance discrepancy factor (ADF) and the Balmer Jump temperature determined from observations of the Orion Nebula can simultaneously be reproduced by this model (implying upward corrections for CELs by a factor of 1.15), we find that the required X-ray fluxes exceed the known Orions stellar and diffuse X-ray budget, if we assume that the clumps are located at the edge of the blister. We propose, however, that spatially resolved observations may be used to empirically test the model, and we outline how the framework developed in this letter may be applied in the future to objects with better constrained geometries (e.g. planetary nebulae).
In this paper, we will focus on the advances made in the last few years regarding the abundance discrepancy problem in ionized nebulae. We will show the importance of collecting deep, high-quality data of H II regions and planetary nebulae taken with
We present results from integral field spectroscopy with PMAS. The observed field contains: five protoplanetary discs (also known as proplyds), the high-velocity jet HH 514 and a bowshock. Spatial distribution maps are obtained for different emission
The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Unive
(Abridged) We present the abundance analysis of 12 PNe ionized by [WC]-type stars and wels obtained from high-resolution spectrophotometric data. Our main aims are to determine the chemical composition of the PNe and to study the behaviour of the abu
Photoionization produces supra-thermal electrons, electrons with much more energy than is found in a thermalized gas at electron temperatures characteristic of nebulae. The presence of these high energy electrons may solve the long-standing t^2/ADF p