ﻻ يوجد ملخص باللغة العربية
Jordan-Wigner transformation and Bogolyubov transformation are the main steps of the diagonalization of Hamiltonian and paly an important role in the statistical mechanics calculations for one-dimensional Heisenberg spin chain model. Many methods can be exploited as a tool to detect quantum phase transition, regions of criticality and scaling behavior in the vicinity of a quantum phase transition, such as geometric phase, fidelity susceptibility, order parameter, and entanglement entropy, which have direct relation with Bogolyubov transformation. We diagonalized the Hamiltonian in XY spin-chain systems with Dzyaloshinskii-Moriya interactions, the results shows that only the energy spectrum but not the coefficients of the Bogolyubov transformation depends on DM interaction. Therefore, the DM interaction may not influence the critical magnetic field of quantum phase transitions and not induce new critical regions in the XY spin model. Moreover, we further prove the ideas by the methods of geometric phases in this model.
The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii--Moriya (DM) interaction considered as Gaussian distribution, the entanglement in one-dimensional random $XY$ spin systems is investigated by the method of solving the
In order to explore the effect of external temperature $T$ in quantum correlation we compute thermal entanglement and thermal discord analytically in the Heisenberg $X$ $Y$ $Z$ model with Dzyaloshinskii-Moriya Interaction term ${bm D} cdot left( {bm
In this paper, we study the thermal entanglement in a two-qubit Heisenberg XYZ system with different Dzyaloshinskii-Moriya (DM) couplings. We show that different DM coupling parameters have different influences on the entanglement and the critical te
By using the method of density-matrix renormalization-group to solve the different spin-spin correlation functions, the nearest-neighbouring entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of one-dimensional alternating Heisenberg
The evolution of entanglement in a 3-spin chain with nearest-neighbor Heisenberg-XY interactions for different initial states is investigated here. In an NMR experimental implementation, we generate multipartite entangled states starting from initial