ترغب بنشر مسار تعليمي؟ اضغط هنا

Convection and the Origin of Evershed Flows

126   0   0.0 ( 0 )
 نشر من قبل Aake Nordlund
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerical simulations have by now revealed that the fine scale structure of the penumbra in general and the Evershed effect in particular is due to overturning convection, mainly confined to gaps with strongly reduced magnetic field strength. The Evershed flow is the radial component of the overturning convective flow visible at the surface. It is directed outwards -- away from the umbra -- because of the broken symmetry due to the inclined magnetic field. The dark penumbral filament cores visible at high resolution are caused by the cusps in the magnetic field that form above the gaps. Still remaining to be established are the details of what determines the average luminosity of penumbrae, the widths, lengths, and filling factors of penumbral filaments, and the amplitudes and filling factors of the Evershed flow. These are likely to depend at least partially also on numerical aspects such as limited resolution and model size, but mainly on physical properties that have not yet been adequately determined or calibrated, such as the plasma beta profile inside sunspots at depth and its horizontal profile, the entropy of ascending flows in the penumbra, etc.



قيم البحث

اقرأ أيضاً

There have been a few reports in the literature of counter-Evershed flows observed in well developed sunspot penumbrae, i.e. flows directed towards the umbra along penumbral filaments. Here we investigate the driving forces of such counter-Evershed f lows in a radiative magnetohydrodynamic simulation of a sunspot and compare them with the forces acting on the normal Evershed flow. The simulation covers a timespan of 100 solar hours and generates an Evershed outflow exceeding 8 km s$^{-1}$ in the penumbra along radially aligned filaments where the magnetic field is almost horizontal. Additionally, the simulation produces a fast counter-Evershed flow (i.e., an inflow near $tau = 1$) in some regions within the penumbra, reaching peak flow speeds of $sim$12 km s$^{-1}$. The counter-Evershed flows are transient and typically last a few hours before they turn into outflows again. By using the kinetic energy equation and evaluating its various terms in the simulation box, we found that the Evershed flow occurs due to overturning convection in a strongly inclined magnetic field while the counter-Evershed flows can be well described as siphon flows.
One of the main characteristics of the penumbra of sunspots is the radially outward-directed Evershed flow. Only recently have penumbral regions been reported with similar characteristics to normal penumbral filaments, but with an opposite direction of the flow. Such flows directed towards the umbra are known as counter Evershed flows (CEFs). We aim to determine the frequency of occurrence of CEFs in active regions (ARs) and to characterize their lifetime and the prevailing conditions in the ARs. We analysed the continuum images, Dopplergrams, and magnetograms recorded by SDO/HMI of 97 ARs that appeared from 2011 to 2017. We followed the ARs for $9.6pm1.4$ days on average. We found 384 CEFs in total, with a median value of 6 CEFs per AR. CEFs are a rather common feature, they occur in 83.5% of all ARs regardless of the magnetic complexity of the AR. However, CEFs were observed on average only during 5.9% of the mean total duration of all the observations analyzed here. The lifetime of CEFs follows a log-normal distribution with a median value of 10.6$_{-6.0}^{+12.4}$ hr. In addition, we report two populations of CEFs depending on whether they are associated with light bridges, or not. We explain that the rarity of reports of CEFs in the literature is a result of highly incomplete coverage of ARs with spectropolarimetric data. By using the continuous observations now routinely available from space, we are able to overcome this limitation.
Recently Pasetto et al. have proposed a new method to derive a convection theory appropriate for the implementation in stellar evolution codes. Their approach is based on the simple physical picture of spherical bubbles moving within a potential flow in dynamically unstable regions, and a detailed computation of the bubble dynamics. Based on this approach the authors derive a new theory of convection which is claimed to be parameter free, non-local and time-dependent. This is a very strong claim, as such a theory is the holy grail of stellar physics. Unfortunately we have identified several distinct problems in the derivation which ultimately render their theory inapplicable to any physical regime. In addition we show that the framework of spherical bubbles in potential flows is unable to capture the essence of stellar convection, even when equations are derived correctly.
We studied the variations of line-of-sight photospheric plasma flows during the formation phase of the penumbra around a pore in Active Region NOAA 11490. We used a high spatial, spectral, and temporal resolution data set acquired by the Interferomet ric BIdimensional Spectrometer (IBIS) operating at the NSO/Dunn Solar Telescope as well as data taken by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory satellite (SDO/HMI). Before the penumbra formed we observed a redshift of the spectral line in the inner part of the annular zone surrounding the pore as well as a blueshift of material associated with opposite magnetic polarity further away from the pore. We found that the onset of the classical Evershed flow occurs in a very short time scale -- 1-3 hours -- while the penumbra is forming. During the same time interval we found changes in the magnetic field inclination in the penumbra, with the vertical field actually changing sign near the penumbral edge, while the total magnetic field showed a significant increase, about 400 G. To explain these and other observations related to the formation of the penumbra and the onset of the Evershed flow we propose a scenario in which the penumbra is formed by magnetic flux dragged down from the canopy surrounding the initial pore. The Evershed flow starts when the sinking magnetic field dips below the solar surface and magnetoconvection sets in.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا