ترغب بنشر مسار تعليمي؟ اضغط هنا

The globular clusters-stellar haloes connection in early type galaxies

113   0   0.0 ( 0 )
 نشر من قبل Favio Faifer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper explores if, and to what an extent, the stellar populations of early type galaxies can be traced through the colour distribution of their globular cluster systems. The analysis, based on a galaxy sample from the Virgo ACS data, is an extension of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that a) Integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; b) The inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; c) Most globular cluster systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; d) The stellar mass-metallicity relation is relatively shallow but shows a slope change at $M_*approx 10^{10} M_odot$. Galaxies with smaller stellar masses show predominantly unimodal globular cluster colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched intestellar matter.



قيم البحث

اقرأ أيضاً

Using the exquisite depth of the Hubble Ultra Deep Field (HUDF12 programme) dataset, we explore the ongoing assembly of the outermost regions of the most massive galaxies ($rm M_{rm stellar}geq$ 5$times$10$^{10}$ M$_{odot}$) at $z leq$ 1. The outskir ts of massive objects, particularly Early-Types Galaxies (ETGs), are expected to suffer a dramatic transformation across cosmic time due to continuous accretion of small galaxies. HUDF imaging allows us to study this process at intermediate redshifts in 6 massive galaxies, exploring the individual surface brightness profiles out to $sim$25 effective radii. We find that 5-20% of the total stellar mass for the galaxies in our sample is contained within 10 $< R <$ 50 kpc. These values are in close agreement with numerical simulations, and higher than those reported for local late-type galaxies ($lesssim$5%). The fraction of stellar mass stored in the outer envelopes/haloes of Massive Early-Type Galaxies increases with decreasing redshift, being 28.7% at $< z > =$ 0.1, 15.1% at $< z > =$ 0.65 and 3.5% at $< z > =$ 2. The fraction of mass in diffuse features linked with ongoing minor merger events is $>$ 1-2%, very similar to predictions based on observed close pair counts. Therefore, the results for our small albeit meaningful sample suggest that the size and mass growth of the most massive galaxies have been solely driven by minor and major merging from $z =$ 1 to today.
We show that hard encounters in the central regions of globular clusters embedded in dark matter (DM) haloes necessarily lead to the formation of gravitationally-bound stellar envelopes that extend far beyond the nominal tidal radius of the system. U sing statistical arguments and numerical techniques we derive the equilibrium distribution function of stars ejected from the centre of a non-divergent spherical potential. Independently of the velocity distribution with which stars are ejected, GC envelopes have density profiles that approach asymptotically $rhosim r^{-4}$ at large distances and become isothermal towards the centre. Adding a DM halo component leaves two clear-cut observational signatures: (i) a flattening, or slightly increase of the projected velocity dispersion profile at large distances, and (ii) an outer surface density profile that is systematically shallower than in models with no dark matter.
136 - Aaron A. Dutton 2010
Using estimates of dark halo masses from satellite kinematics, weak gravitational lensing, and halo abundance matching, combined with the Tully-Fisher and Faber-Jackson relations, we derive the mean relation between the optical, V_opt, and virial, V_ 200, circular velocities of early- and late-type galaxies at redshift z~0. For late-type galaxies V_opt ~ V_200 over the velocity range V_opt=90-260 km/s, and is consistent with V_opt = V_maxh (the maximum circular velocity of NFW dark matter haloes in the concordance LCDM cosmology). However, for early-type galaxies V_opt e V_200, with the exception of early-type galaxies with V_opt simeq 350 km/s. This is inconsistent with early-type galaxies being, in general, globally isothermal. For low mass (V_opt < 250 km/s) early-types V_opt > V_maxh, indicating that baryons have modified the potential well, while high mass (V_opt > 400 km/s) early-types have V_opt < V_maxh. Folding in measurements of the black hole mass - velocity dispersion relation, our results imply that the supermassive black hole - halo mass relation has a logarithmic slope which varies from ~1.4 at halo masses of ~10^{12} Msun/h to ~0.65 at halo masses of 10^{13.5} Msun/h. The values of V_opt/V_200 we infer for the Milky Way and M31 are lower than the values currently favored by direct observations and dynamical models. This offset is due to the fact that the Milky Way and M31 have higher V_opt and lower V_200 compared to typical late-type galaxies of the same stellar masses. We show that current high resolution cosmological hydrodynamical simulations are unable to form galaxies which simultaneously reproduce both the V_opt/V_200 ratio and the V_opt-M_star (Tully-Fisher/Faber-Jackson) relation.
The interpretation that bimodal colour distributions of globular clusters (GCs) reflect bimodal metallicity distributions has been challenged. Non-linearities in the colour to metallicity
494 - Andrea Negri 2015
High resolution 2D hydrodynamical simulations describing the evolution of the hot ISM in axisymmetric two-component models of early-type galaxies well reproduced the observed trends of the X-ray luminosity ($L_mathrm{x}$) and temperature ($T_mathrm{x }$) with galaxy shape and rotation, however they also revealed the formation of an exceedingly massive cooled gas disc in rotating systems. In a follow-up of this study, here we investigate the effects of star formation in the disc, including the consequent injection of mass, momentum and energy in the pre-existing interstellar medium. It is found that subsequent generations of stars originate one after the other in the equatorial region; the mean age of the new stars is $> 5$ Gyr, and the adopted recipe for star formation can reproduce the empirical Kennicutt-Schmidt relation. The results of the previous investigation without star formation, concerning $L_mathrm{x}$ and $T_mathrm{x}$ of the hot gas, and their trends with galactic shape and rotation, are confirmed. At the same time, the consumption of most of the cold gas disc into new stars leads to more realistic final systems, whose cold gas mass and star formation rate agree well with those observed in the local universe. In particular, our models could explain the observation of kinematically aligned gas in massive, fast-rotating early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا