ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of resistance feedback on spin torque-induced switching of nanomagnets

191   0   0.0 ( 0 )
 نشر من قبل Samir Garzon
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegraphers equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of MTJs, and show that magnetization switching is only affected by capacitive shunting in the pF range.



قيم البحث

اقرأ أيضاً

Spin-transfer torques in a nanocontact to an extended magnetic film can create spin waves that condense to form dissipative droplet solitons. Here we report an experimental study of the temperature dependence of the current and applied field threshol ds for droplet soliton formation, as well as the nanocontacts electrical characteristics associated with droplet dynamics. Nucleation of droplet solitons requires higher current densities at higher temperatures, in contrast to typical spin-transfer torque induced switching between static magnetic states. Magnetoresistance and electrical noise measurements show that soliton instabilities become more pronounced with increasing temperature. These results are of fundamental interest in understanding the influence of thermal noise on droplet solitons, and in controlling their dynamics.
Magnetic insulators, such as yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y$_3$Fe$_5$O$_{12}$/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y$_3$Fe$_5$O$_{12}$/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd$_3$Ga$_5$O$_{12 }$ substrates and lift-off. We observe field-like and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y$_3$Fe$_5$O$_{12}$/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. These heating effects are much more pronounced in the investigated nanostructures than in comparable micron-sized samples. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident: quantized spin-wave modes across the width of the wires are observed in the spectra. Our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.
Resistance switching effects in metal/perovskite contacts based on epitaxial c-axis oriented Y-Ba-Cu-O (YBCO) thin films with different crystallographic orientations have been studied. Three types of Ag/YBCO junctions with the contact restricted to ( i) c-axis direction, (ii) ab-plane direction, and (iii) both were designed and fabricated, and their current-voltage characteristics have been measured. The type (i) junctions exhibited conventional bipolar resistance switching behavior, whereas in other two types the low-resistance state was unsteady and their resistance quickly relaxed to the initial high-resistance state. Physical mechanism based on the oxygen diffusion scenario, explaining such behavior, is discussed.
We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance (FMR) dynamics. The Oersted field from the current also generates an FMR signal but with a different symmetry. The ratio of these two signals allows a quantitative determination of the spin current and the spin Hall angle.
Using type-x spin-orbit torque (SOT) switching scheme, in which the easy axis (EA) of the ferromagnetic (FM) layer and the charge current flow direction are collinear, is possible to realize a lower-power-consumption, higher-density, and better-perfo rmance SOT magnetoresistive random access memory (SOT-MRAM) as compared to the conventional type-y design. Here, we systematically investigate type-x SOT switching properties by both macrospin and micromagnetic simulations. The out-of-plane external field and anisotropy field dependence of the switching current density ($J_{sw}$) is first examined in the ideal type-x configuration. Next, we study the FM layer canting angle ($phi_{EA}$) dependence of $J_{sw}$ through macrospin simulations and experiments, which show a transformation of switching dynamics from type-x to type-y with increasing $phi_{EA}$. By further integrating field-like torque (FLT) into the simulated system, we find that a positive FLT can assist type-x SOT switching while a negative one brings about complex dynamics. More crucially, with the existence of a sizable FLT, type-x switching mode results in a lower critical switching current than type-y at current pulse width less than ~ 10 ns, indicating the advantage of employing type-x design for ultrafast switching using materials systems with FLT. Our work provides a thorough examination of type-x SOT scheme with various device/materials parameters, which can be informative for designing next-generation SOT-MRAM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا