ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic Aperture Calculation and Scaling Laws for Radio Detection of Lunar-Target UHE Neutrinos

150   0   0.0 ( 0 )
 نشر من قبل Kenneth Gayley
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive analytic expressions, and approximate them in closed form, for the effective detection aperture for Cerenkov radio emission from ultra-high-energy neutrinos striking the Moon. The resulting apertures are in good agreement with recent Monte Carlo simulations and support the conclusion of James & Protheroe (2009)that neutrino flux upper limits derived from the GLUE search (Gorham et al.2004) were too low by an order of magnitude. We also use our analytic expressions to derive scaling laws for the aperture as a function of observational and lunar parameters. We find that at low frequencies downward-directed neutrinos always dominate, but at higher frequencies, the contribution from upward-directed neutrinos becomes increasingly important, especially at low neutrino energies. Detecting neutrinos from Earth near the GZK regime will likely require radio telescope arrays with extremely large collecting area and hundreds of hour of exposure time. Higher energy neutrinos are most easily detected using lower frequencies. Lunar surface roughness is a decisive factor for obtaining detections at higher frequencies and higher energies.



قيم البحث

اقرأ أيضاً

Lunar Cherenkov experiments aim to detect nanosecond pulses of Cherenkov emission produced during UHE cosmic ray or neutrino interactions in the lunar regolith. Pulses from these interactions are dispersed, and therefore reduced in amplitude, during propagation through the Earths ionosphere. Pulse dispersion must therefore be corrected to maximise the received signal to noise ratio and subsequent chances of detection. The pulse dispersion characteristic may also provide a powerful signature to determine the lunar origin of a pulse and discriminate against pulses of terrestrial radio frequency interference (RFI). This characteristic is parameterised by the instantaneous Total Electron Content (TEC) of the ionosphere and therefore an accurate knowledge of the ionospheric TEC provides an experimental advantage for the detection and identification of lunar Cherenkov pulses. We present a new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses using lunar Faraday rotation measurements combined with geomagnetic field models.
UHE particle detection using the lunar Cherenkov technique aims to detect nanosecond pulses of Cherenkov emission which are produced during UHE cosmic ray and neutrino interactions in the Moons regolith. These pulses will reach Earth-based telescopes dispersed, and therefore reduced in amplitude, due to their propagation through the Earths ionosphere. To maximise the received signal to noise ratio and subsequent chances of pulse detection, ionospheric dispersion must therefore be corrected, and since the high time resolution would require excessive data storage this correction must be made in real time. This requires an accurate knowledge of the dispersion characteristic which is parameterised by the instantaneous Total Electron Content (TEC) of the ionosphere. A new method to calibrate the dispersive effect of the ionosphere on lunar Cherenkov pulses has been developed for the LUNASKA lunar Cherenkov experiments. This method exploits radial symmetries in the distribution of the Moons polarised emission to make Faraday rotation measurements in the visibility domain of synthesis array data (i. e. instantaneously). Faraday rotation measurements are then combined with geomagnetic field models to estimate the ionospheric TEC. This method of ionospheric calibration is particularly attractive for the lunar Cherenkov technique as it may be used in real time to estimate the ionospheric TEC along a line-of-sight to the Moon and using the same radio telescope.
During the past decade there have been several attempts to detect cosmogenic ultra high energy (UHE) neutrinos by searching for radio Cerenkov bursts resulting from charged impact showers in terrestrial ice or the lunar regolith. So far these radio s earches have yielded no detections, but the inferred flux upper limits have started to constrain physical models for UHE neutrino generation. For searches which use the Moon as a target, we summarize the physics of the interaction, properties of the resulting Cerenkov radio pulse, detection statistics, effective aperture scaling laws, and derivation of upper limits for isotropic and point source models. We report on initial results from the RESUN search, which uses the Expanded Very Large Array configured in multiple sub-arrays of four antennas at 1.45 GHz pointing along the lunar limb. We detected no pulses of lunar origin during 45 observing hours. This implies upper limits to the differential neutrino flux E^2 dN/dE < 0.003 EeV km^{-2} s^{-1} sr^{-1} and < 0.0003 EeV km$^{-2} s^{-1} at 90% confidence level for isotropic and sampled point sources respectively, in the neutrino energy range 10^{21.6} < E(eV) < 10^{22.6}. The isotropic flux limit is comparable to the lowest published upper limits for lunar searches. The full RESUN search, with an additional 200 hours observing time and an improved data acquisition scheme, will be be an order of magnitude more sensitive in the energy range 10^{21} < E(eV) < 10^{22} than previous lunar-target searches, and will test Z burst models of neutrino generation.
We evaluate both the tau lepton energy loss produced by photonuclear interactions and the neutrino charged current cross section at ultra-high energies, both relevant to neutrino bounds with Earth-skimming tau neutrinos.
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of th e integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semi-analytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in a optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte-Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا