ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and Evolution of Pre-Main Sequence Stars

150   0   0.0 ( 0 )
 نشر من قبل Norbert S. Schulz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-mass pre-main sequence (PMS) stars are strong and variable X-ray emitters, as has been well established by EINSTEIN and ROSAT observatories. It was originally believed that this emission was of thermal nature and primarily originated from coronal activity (magnetically confined loops, in analogy with Solar activity) on contracting young stars. Broadband spectral analysis showed that the emission was not isothermal and that elemental abundances were non-Solar. The resolving power of the Chandra and XMM X-ray gratings spectrometers have provided the first, tantalizing details concerning the physical conditions such as temperatures, densities, and abundances that characterize the X-ray emitting regions of young star. These existing high resolution spectrometers, however, simply do not have the effective area to measure diagnostic lines for a large number of PMS stars over required to answer global questions such as: how does magnetic activity in PMS stars differ from that of main sequence stars, how do they evolve, what determines the population structure and activity in stellar clusters, and how does the activity influence the evolution of protostellar disks. Highly resolved (R>3000) X-ray spectroscopy at orders of magnitude greater efficiency than currently available will provide major advances in answering these questions. This requires the ability to resolve the key diagnostic emission lines with a precision of better than 100 km/s.



قيم البحث

اقرأ أيضاً

We present new sub-arcsecond (0.7) Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the 1.3 mm continuum emission from circumstellar disks around 11 low and intermediate mass pre-main sequence stars. High resolution ob servations for 3 additional sources were obtained from literature. In all cases the disk emission is spatially resolved. We adopt a self consistent accretion disk model based on the similarity solution for the disk surface density and constrain the dust radial density distribution on spatial scales of about 40 AU. Disk surface densities appear to be correlated with the stellar ages where the characteristic disk radius increases from ~ 20 AU to 100 AU over about 5 Myr. This disk expansion is accompanied by a decrease in the mass accretion rate, suggesting that our sample disks form an evolutionary sequence. Interpreting our results in terms of the temporal evolution of a viscous $alpha$-disk, we estimate (i) that at the beginning of the disk evolution about 60% of the circumstellar material was located inside radii of 25--40 AU, (ii) that disks formed with masses from 0.05 to 0.4 M$_{sun}$ and (iii) that the viscous timescale at the disk initial radius is about 0.1-0.3 Myr. Viscous disk models tightly link the surface density $Sigma(R)$ with the radial profile of the disk viscosity $ u(R) propto R^{gamma}$. We find values of $gamma$ ranging from -0.8 to 0.8, suggesting that the viscosity dependence on the orbital radius can be very different in the observed disks. Adopting the $alpha$ parameterization for the viscosity, we argue that $alpha$ must decrease with the orbital radius and that it may vary between 0.5 and $10^{-4}$. (abridged)
The bulk of X-ray emission from pre-main-sequence (PMS) stars is coronal in origin. We demonstrate herein that stars on Henyey tracks in the Hertzsprung-Russell diagram have lower $log(L_X/L_ast)$, on average, than stars on Hayashi tracks. This effec t is driven by the decay of $L_X$ once stars develop radiative cores. $L_X$ decays faster with age for intermediate mass PMS stars, the progenitors of main sequence A-type stars, compared to those of lower mass. As almost all main sequence A-type stars show no detectable X-ray emission, we may already be observing the loss of their coronae during their PMS evolution. Although there is no direct link between the size or mass of the radiative core and $L_X$, the longer stars have spent with partially convective interiors, the weaker their X-ray emission becomes. This conference paper is a synopsis of Gregory, Adams and Davies (2016).
[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of their star-forming regions, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of PMS stars in the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.
69 - Mouyuan Sun 2018
We explore the evolution of the time variability (in the optical $g$-band and on timescales of weeks to years) of SDSS Stripe 82 quasars along the quasar main sequence. A parent sample of $1004$ quasars within $0.5leq z leq 0.89$ are used for our sta tistical studies, we then make subsamples from our parent sample: a subsample of $246$ quasars with similar luminosities, and a subsample of $399$ quasars with similar Rfe (i.e., the ratio of the equivalent width of FeII within $4435$--$4685 mathrm{AA}$ to that of Hbeta). We find the variability amplitude decreases with luminosity ($L_{mathrm{bol}}$). The anti-correlation between the variability amplitude and Rfe is weak but statistically significant. The characteristic timescale, $tau$, correlates mostly with quasar luminosity, its dependence on Rfe is statistically insignificant. After controlling luminosity and Rfe, the high- and low-FWHM samples have similar structure functions. These results support the framework that Rfe is governed by Eddington ratio and FWHM of Hbeta is mostly determined by orientation. We then provide new empirical relations between variability parameters and quasar properties (i.e., luminosity and Rfe). Our new relations are consistent with the scenario that quasar variability is driven by the thermal fluctuations in the accretion disk, $tau$ seems to correspond to the thermal timescale. From our new relations, we find the short-term variability is mostly sensitive to $L_{mathrm{bol}}$. Basing on this, we propose that quasar short-term (a few months) variability might be a new type of Standard Candle and can be adopted to probe cosmology.
204 - D. Fedele 2009
We present initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0 - M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of ages between 1 - 50 Myr. The fraction of accreting stars decreases from ~60% at 1.5 - 2 Myr to ~2% at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of $10^{-11}$ Msun yr-1. We compared the fraction of stars showing ongoing accretion (f_acc) to the fraction of stars with near-to-mid infrared excess (f_IRAC). In most cases we find f_acc < f_IRAC, i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95% of the stellar population has stopped accreting material at a rate of > 10^{-11} Msun yr-1, while ~20% of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (t_acc) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (t_IRAC) of 2.9 Myr. Planet formation, and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا