ﻻ يوجد ملخص باللغة العربية
We report on growth and ferroelectric (FE) properties of superlattices (SLs) composed of the FE BaTiO3 and the paraelectric (PE) CaTiO3. Previous theories have predicted that the polarization in (BaTiO3)n/(CaTiO3)n SLs increases as the sublayer thickness (n) increases when the same strain state is maintained. However, our BaTiO3/CaTiO3 SLs show a varying lattice-strain state and systematic reduction in polarization with increasing n while coherently-strained SLs with n=1, 2 show a FE polarization of ca. 8.5 uC/cm^2. We suggest that the strain coupling plays more important role in FE properties than the electrostatic interlayer coupling based on constant dielectric permittivities.
Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 deg C wide. The deposition temperature
We report on quantification and elastic strain mapping in two artificial BaZrO3/BaTiO3 (BZ/BT) superlattices having periods of 6.6 nm and 11 nm respectively, grown on (001) SrTiO3 single crystal substrate by pulsed laser deposition technique. The met
Recent works suggest that the surface chemistry, in particular, the presence of oxygen vacancies can affect the polarization in a ferroelectric material. This should, in turn, influence the domain ordering driven by the need to screen the depolarizin
First-principles density functional calculations are performed to investigate the interplay between inplane strains and interface effects in 1by1 PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices of tetragonal symmetry. One particular emphasis of this st
The integration of complex oxides on silicon presents opportunities to extend and enhance silicon technology with novel electronic, magnetic, and photonic properties. Among these materials, barium titanate (BaTiO3) is a particularly strong ferroelect