ﻻ يوجد ملخص باللغة العربية
In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.
We present a review of the latest developments in 1D OWT. Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear fiel
Theoretical studies on wave turbulence predict that a purely classical system of random waves can exhibit a process of condensation, in analogy with the quantum Bose-Einstein condensation. We report the experimental observation of the transition to c
Optical communication is an integral part of the modern economy, having all but replaced electronic communication systems. Future growth in bandwidth appears to be on the horizon using structured light, encoding information into the spatial modes of
Classical nonlinear waves exhibit a phenomenon of condensation that results from the natural irreversible process of thermalization, in analogy with the quantum Bose-Einstein condensation. Wave condensation originates in the divergence of the thermod
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically fo