ﻻ يوجد ملخص باللغة العربية
In Newcombs paradox you choose to receive either the contents of a particular closed box, or the contents of both that closed box and another one. Before you choose though, an antagonist uses a prediction algorithm to deduce your choice, and fills the two boxes based on that deduction. Newcombs paradox is that game theorys expected utility and dominance principles appear to provide conflicting recommendations for what you should choose. A recent extension of game theory provides a powerful tool for resolving paradoxes concerning human choice, which formulates such paradoxes in terms of Bayes nets. Here we apply this to ol to Newcombs scenario. We show that the conflicting recommendations in Newcombs scenario use different Bayes nets to relate your choice and the algorithms prediction. These two Bayes nets are incompatible. This resolves the paradox: the reason there appears to be two conflicting recommendations is that the specification of the underlying Bayes net is open to two, conflicting interpretations. We then show that the accuracy of the prediction algorithm in Newcombs paradox, the focus of much previous work, is irrelevant. We similarly show that the utility functions of you and the antagonist are irrelevant. We end by showing that Newcombs paradox is time-reversal invariant; both the paradox and its resolution are unchanged if the algorithm makes its `prediction emph{after} you make your choice rather than before.
In Newcombs paradox you choose to receive either the contents of a particular closed box, or the contents of both that closed box and another one. Before you choose, a prediction algorithm deduces your choice, and fills the two boxes based on that de
Over the past 70 years, the number of international environmental agreements (IEAs) has increased substantially, highlighting their prominent role in environmental governance. This paper applies the toolkit of network analysis to identify the network
Observations of star-forming galaxies in the distant Universe (z > 2) are starting to confirm the importance of massive stars in shaping galaxy emission and evolution. Inevitably, these distant stellar populations are unresolved, and the limited data
The effect of magnetic fields on the frequencies of toroidal oscillations of neutron stars is derived to lowest order. Interpreting the fine structure in the QPO power spectrum of magnetars following giant flares reported by Strohmayer and Watts (200
Planck data has not found the smoking gun of non-Gaussianity that would have necessitated consideration of inflationary models beyond the simplest canonical single field scenarios. This raises the important question of what these results do imply for