ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete integrable systems and deformations of associative algebras

206   0   0.0 ( 0 )
 نشر من قبل Boris Konopelchenko
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B.G.Konopelchenko




اسأل ChatGPT حول البحث

Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. A theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the Deformation Driving Algebra and governed by the central system of equations. It is demonstrated that many discrete equations like discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful.An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.



قيم البحث

اقرأ أيضاً

203 - B.G.Konopelchenko 2008
Discrete and q-difference deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by a central system of discrete or q-difference equations which in particular cases represent discrete and q-differenc
355 - B.G.Konopelchenko 2008
Deformations of the structure constants for a class of associative noncommutative algebras generated by Deformation Driving Algebras (DDAs) are defined and studied. These deformations are governed by the Central System (CS). Such a CS is studied for the case of DDA being the algebra of shifts. Concrete examples of deformations for the three-dimensional algebra governed by discrete and mixed continuous-discrete Boussinesq (BSQ) and WDVV equations are presented. It is shown that the theory of the Darboux transformations, at least for the BSQ case, is completely incorporated into the proposed scheme of deformations.
225 - B.G.Konopelchenko 2008
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curva ture tensor for Christoffel symbols identified with the structure constants. A subclass of isoassociative quantum deformations is described by the oriented associativity equation and, in particular, by the WDVV equation. It is demonstrated that a wider class of weakly (non)associative quantum deformations is connected with the integrable soliton equations too. In particular, such deformations for the three-dimensional and infinite-dimensional algebras are described by the Boussinesq equation and KP hierarchy, respectively.
Coisotropic deformations of algebraic varieties are defined as those for which an ideal of the deformed variety is a Poisson ideal. It is shown that coisotropic deformations of sets of intersection points of plane quadrics, cubics and space algebraic curves are governed, in particular, by the dKP, WDVV, dVN, d2DTL equations and other integrable hydrodynamical type systems. Particular attention is paid to the study of two- and three-dimensional deformations of elliptic curves. Problem of an appropriate choice of Poisson structure is discussed.
A linkage mechanism consists of rigid bodies assembled by joints which can be used to translate and transfer motion from one form in one place to another. In this paper, we are particularly interested in a family of spacial linkage mechanisms which c onsist of $n$-copies of a rigid body joined together by hinges to form a ring. Each hinge joint has its own axis of revolution and rigid bodies joined to it can be freely rotated around the axis. The family includes the famous threefold symmetric Bricard6R linkage also known as the Kaleidocycle, which exhibits a characteristic turning over motion. We can model such a linkage as a discrete closed curve in $mathbb{R}^3$ with a constant torsion up to sign. Then, its motion is described as the deformation of the curve preserving torsion and arc length. We describe certain motions of this object that are governed by the semi-discrete mKdV equations, where infinitesimally the motion of each vertex is confined in the osculating plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا