ترغب بنشر مسار تعليمي؟ اضغط هنا

Depletion of the nuclear Fermi sea

285   0   0.0 ( 0 )
 نشر من قبل Arnau Rios
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The short-range and tensor components of the bare nucleon-nucleon interaction induce a sizeable depletion of low momenta in the ground state of a nuclear many-body system. The self-consistent Greens function method within the ladder approximation provides an textit{ab-initio} description of correlated nuclear systems that accounts properly for these effects. The momentum distribution predicted by this approach is analyzed in detail, with emphasis on the depletion of the lowest momentum state. The temperature, density, and nucleon asymmetry (isospin) dependence of the depletion of the Fermi sea is clarified. A connection is established between the momentum distribution and the time-ordered components of the self-energy, which allows for an improved interpretation of the results. The dependence on the underlying nucleon-nucleon interaction provides quantitative estimates of the importance of short-range and tensor correlations in nuclear systems.



قيم البحث

اقرأ أيضاً

The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties which determine the neutron star thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions, are calculated within the Brueckner-Hartree-Fock approach employing the AV18 two-body force supplemented by a microscopic three body force. Neutrino emissivity, heat capacity and, in particular, neutron 3PF2 superfluidity turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young neutron stars are significantly slowed
95 - J.-P. Ebran , E. Khan , T. Niksic 2012
Using the framework of nuclear energy density functionals we examine the conditions for single-nucleon localization and formation of cluster structures in finite nuclei. We propose to characterize localization by the ratio of the dispersion of single -nucleon wave functions to the average inter-nucleon distance. This parameter generally increases with mass and describes the gradual transition from a hybrid phase in light nuclei, characterized by the spatial localization of individual nucleon states that leads to the formation of cluster structures, toward the Fermi liquid phase in heavier nuclei. Values of the localization parameter that correspond to a crystal phase cannot occur in finite nuclei. Typical length and energy scales in nuclei allow the formation of liquid drops, clusters, and halo structures.
We present the results of a recent study of meson-exchange two-body currents in lepton-nucleus inclusive scattering at various kinematics and for different nuclei within the Relativistic Fermi Gas model. We show that the associated nuclear response f unctions at their peaks scale as $A k_F^2$, for Fermi momentum $k_F$ going from 200 to 300 MeV/c and momentum transfer $q$ from $2k_F$ to 2 GeV/c. This behavior is different from what is found for the quasielastic response, which scales as $A/k_F$. This result can be valuable in the analyses of long-baseline neutrino oscillation experiments, which need to implement these nuclear effects in Monte Carlo simulations for different kinematics and nuclear targets.
136 - I. S. Towner 2002
The measured $ft$-values for superallowed $0^{+} to 0^{+}$ nuclear $beta$-decay can be used to obtain the value of the vector coupling constant and thus to test the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. An essential requirement for this test is accurate calculations for the radiative and isospin symmetry-breaking corrections that must be applied to the experimental data. We present a new and consistent set of calculations for the nuclear-structure-dependent components of these corrections. These new results do not alter the current status of the unitarity test -- it still fails by more than two standard deviations -- but they provide calculated corrections for eleven new superallowed transitions that are likely to become accessible to precise measurements in the future. The reliability of all calculated corrections is explored and an experimental method indicated by which the structure-dependent corrections can be tested and, if necessary, improved.
Deep Inelastic Scattering and Drell-Yan experiments have measured a light flavor asymmetry in the proton sea. The excess of dbar over ubar quarks can be understood in many models, but the ratio dbar(x)/ubar(x) measured by Fermilab E866 has not been s uccessfully described. Fermilab E-906 will probe the kinematic dependence of this ratio with better resolution and extend it to higher x. We have developed a hybrid model that includes both perturbative and non-perturbative contributions to the proton sea. A meson cloud formalism is used to represent the non-perturbative fluctuation of the proton into meson-baryon states. We include perturbative processes by using a statistical model that uses Fock states of quarks, antiquarks and gluons to represent the parton distributions of the bare hadrons in the meson cloud. We compare our results to the E866 data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا