ﻻ يوجد ملخص باللغة العربية
Three-dimensional magnetohydrodynamic simulations of the surface layers of the Sun intrinsically produce a predominantly horizontal magnetic field in the photosphere. This is a robust result in the sense that it arises from simulations with largely different initial and boundary conditions for the magnetic field. While the disk-center synthetic circular and linear polarization signals agree with measurements from Hinode, their center-to-limb variation sensitively depends on the height variation of the horizontal and the vertical field component and they seem to be at variance with the observed behavior.
Observations with the Hinode space observatory led to the discovery of predominantly horizontal magnetic fields in the photosphere of the quiet internetwork region. Here we investigate realistic numerical simulations of the surface layers of the Sun
The magnetic fields of the quiet Sun cover at any time more than 90% of its surface and their magnetic energy budget is crucial to explain the thermal structure of the solar atmosphere. One of the possible origins of these fields is due to the action
Vertical magnetic fields have been known to exist in the internetwork region for decades, while the properties of horizontal magnetic fields have recently been extensively investigated with textit{Hinode}. Vertical and horizontal magnetic fields in t
The Sun is the only star where we can resolve the intricate magnetism that all convective stars harbor. Yet, more than 99% of its visible surface along the solar cycle (the so-called quiet Sun) is filled with a tangled, unresolved magnetism. These hi
Properties of transient horizontal magnetic fields (THMFs) in both plage and quiet Sun regions are obtained and compared. Spectro-polarimetric observations with the Solar Optical Telescope (SOT) on the Hinode satellite were carried out with a cadence