ﻻ يوجد ملخص باللغة العربية
We have studied the electronic structure of Zn$_{0.9}$Fe$_{0.1}$O nano-particles, which have been reported to show ferromagnetism at room temperature, by x-ray photoemission spectroscopy (XPS), resonant photoemission spectroscopy (RPES), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). From the experimental and cluster-model calculation results, we find that Fe atoms are predominantly in the Fe$^{3+}$ ionic state with mixture of a small amount of Fe$^{2+}$ and that Fe$^{3+}$ ions are dominant in the surface region of the nano-particles. It is shown that the room temperature ferromagnetism in the Zn$_{0.9}$Fe$_{0.1}$O nano-particles is primarily originated from the antiferromagnetic coupling between unequal amounts of Fe$^{3+}$ ions occupying two sets of nonequivalent positions in the region of the XMCD probing depth of $sim$ 2-3 nm.
We report on x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies of the paramagnetic (Mn,Co)-co-doped ZnO and ferromagnetic (Fe,Co)-co-doped ZnO nano-particles. Both the surface-sensitive total-electron-yield mode
The electronic structure of Li-doped Ni$_{1-x}$Fe$_x$O has been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Ni $2p$ core-level PES and XAS spectra were not changed by Li doping. In contrast, the Fe
The electronic structure of the Cr ions in the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te ($x=0.03$ and 0.15) thin films has been investigated using x-ray magnetic circular dichroism (XMCD) and photoemission spectroscopy (PES). Magnetic-f
Here we report the synthesis of a bulk oxide diluted magnetic semiconductor (DMS) system La1-xSrxCu0.925Mn0.075SO (x=0, 0.025, 0.05, 0.075, and 0.1). As a wide band gap p-type oxide semiconductor, LaCuSO satisfies all the conditions forecasted theore
High-quality (001)-oriented (pseudo-cubic notation) ferromagnetic YTiO$_3$ thin films were epitaxially synthesized in a layer-by-layer way by pulsed laser deposition. Structural, magnetic and electronic properties were characterized by reflection-hig