We treat the effects of compactified spatial dimensions on the propagation of light in the uncompactified directions in the context of linearized quantum gravity. We find that the flight times of pulses can fluctuate due to modification of the graviton vacuum by the compactification. In the case of a five dimensional Kaluza-Klein theory, the mean variation in flight time can grow logarithmically with the flight distance. This effect is in principle observable, but too small to serve as a realistic probe of the existence of extra dimensions. We also examine the effect of the compactification on the widths of spectral lines, and find that there is a small line narrowing effect. This effect is also small for compactification well above the Planck scale, but might serve as a test of the existence of extra dimensions.