ترغب بنشر مسار تعليمي؟ اضغط هنا

Milagro Observations of Multi-TeV Emission from Galactic Sources in the Fermi Bright Source List

112   0   0.0 ( 0 )
 نشر من قبل John Pretz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly-optimized gamma-hadron separation and utilizes the full 8-year Milagro dataset. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10-50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang Pulsar Wind Nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.



قيم البحث

اقرأ أيضاً

115 - M. Amenomori , X. J. Bi , D. Chen 2009
Using the Tibet-III air shower array, we search for TeV gamma-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe 7 sources instead o f the expected 0.61 sources at a significance of 2 sigma or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 x 10^-6. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, the chance probability rises slightly, to 1.2 x 10^-5, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV gamma-ray excesses. We also find that all 7 sources are associated with pulsars, and 6 of them are coincident with sources detected by the Milagro experiment at a significance of 3 sigma or more at the representative energy of 35 TeV. The significance maps observed by the Tibet-III air shower array around the Fermi sources, which are coincident with the Milagro >=3sigma sources, are consistent with the Milagro observations. This is the first result of the northern sky survey of the Fermi bright Galactic sources in the TeV region.
This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL c atalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi-LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.
Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models where gamma-ray production is dominated by ha dronic mechanisms, and has been named the TeV excess. We show that TeV emission from pulsars naturally explains this excess. In particular, recent observations have detected TeV halos surrounding pulsars that are either nearby or particularly luminous. Here, we show that the full population of Milky Way pulsars will produce diffuse TeV emission concentrated along the Milky Way plane. The total gamma-ray flux from TeV halos is expected to exceed the hadronic gamma-ray flux at energies above ~500 GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. If this scenario is common to all galaxies, it will decrease the contribution of star-forming galaxies to the IceCube neutrino flux. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.
We report on the observation of the region around supernova remnant G65.1+0.6 with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified as GeV pulsars a nd both have a possible counterpart detected at about 35 TeV by the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and found no significant emission in the range around 1 TeV. We therefore report differential flux upper limits, assuming the emission to be point-like (<0.1 deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the two sources respectively. This implies that the Milagro emission is either extended over a much larger area than our point spread function, or it must be peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in the TeV band.
256 - A. A. Abdo , B. Allen , D. Berley 2007
A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma Ray Observatory. Eight candidate sources of TeV emission are detected with pre-trials significance $>4.5sigma$ in the region of Galactic l ongitude $lin[30^circ,220^circ]$ and latitude $bin[-10^circ,10^circ]$. Four of these sources, including the Crab nebula and the recently published MGRO J2019+37, are observed with significances $>4sigma$ after accounting for the trials involved in searching the 3800 square degree region. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا