ﻻ يوجد ملخص باللغة العربية
The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2<z<3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment. This project will enable an unprecedented multi-object spectroscopic capability for the U.S. community through an existing NOAO facility. The U.S. community would have access directly to this instrument/telescope combination, as well as access to the legacy archives that will be created by the BAO key project.
BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOA
This white paper envisions a revolutionary post-DESI, post-LSST dark energy program based on intensity mapping of the redshifted 21cm emission line from neutral hydrogen at radio frequencies. The proposed intensity mapping survey has the unique capab
In recent years forecasting activities have become a very important tool for designing and optimising large scale structure surveys. To predict the performance of such surveys, the Fisher matrix formalism is frequently used as a fast and easy way to
Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed. In this
The advent of Stage IV weak lensing surveys will open up a new era in precision cosmology. These experiments will offer more than an order-of-magnitude leap in precision over existing surveys, and we must ensure that the accuracy of our theory matche