ﻻ يوجد ملخص باللغة العربية
Sensitive and high angular resolution ($sim$ 0.4arcsec) SO$_2$[22$_{2,20}$ $to$ 22$_{1,21}$] and SiO[5$to$4] line and 1.3 and 7 mm continuum observations made with the Submillimeter Array (SMA) and the Very Large Array (VLA) towards the young massive cluster W51 IRS2 are presented. We report the presence of a large (of about 3000 AU) and massive (40 M$_odot$) dusty circumstellar disk and a hot gas molecular ring around a high-mass protostar or a compact small stellar system associated with W51 North. The simultaneous observations of the silicon monoxide molecule, an outflow gas tracer, further revealed a massive (200 M$_odot$) and collimated ($sim14^circ$) outflow nearly perpendicular to the dusty and molecular structures suggesting thus the presence of a single very massive protostar with a bolometric luminosity of more than 10$^5$ L$_odot$. A molecular hybrid LTE model of a Keplerian and infalling ring with an inner cavity and a central stellar mass of more than 60 M$_odot$ agrees well with the SO$_2$[22$_{2,20}$ $to$ 22$_{1,21}$] line observations. Finally, these results suggest that mechanisms, such as mergers of low- and intermediate- mass stars, might be not necessary for forming very massive stars.
We analyzed high angular resolution 45.5 GHz images of the W49 North massive star forming region obtained in 1998 and 2016 with the Very Large Array. Most of the ultracompact HII regions show no detectable changes over the time interval of the observ
Very massive stars (M>100 M$_{odot}$) are very rare objects, but have a strong influence on their environment. The formation of this kind of objects is of prime importance in star formation, but observationally still poorly constrained. We report on
We compare multi-epoch sub-arcsecond VLA imaging of the 22 GHz water masers toward the massive protocluster NGC6334I observed before and after the recent outburst of MM1B in (sub)millimeter continuum. Since the outburst, the water maser emission towa
Young stars are surrounded by a circumstellar disk of gas and dust, within which planet formation can occur. Gravitational forces in multiple star systems can disrupt the disk. Theoretical models predict that if the disk is misaligned with the orbita
Context The ESO Public Survey VISTA Variables in the Via Lactea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge and adjacent regions of the disk. Nearly 150 new open clusters and cluste