ﻻ يوجد ملخص باللغة العربية
We have discovered remarkable jet- and arc-like molecular features toward the rich and young stellar cluster Westerlund2. The jet has a length of ~100 pc and a width of ~10 pc, while the arc shows a crescent shape with a radius of ~30 pc. These molecular features each have masses of ~10000 solar mass and show spatial correlations with the surrounding lower density HI gas. The jet also shows an intriguing positional alignment with the core of the TeV gamma ray source HESS J1023-575 and with the MeV/GeV gamma-ray source recently reported by the Fermi collaboration. We argue that the jet and arc are caused by an energetic event in Westerlund 2, presumably due to an anisotropic supernova explosion of one of the most massive member stars. While the origin of the TeV and GeV gamma-ray sources is uncertain, one may speculate that they are related to the same event via relativistic particle acceleration by strong shock waves produced at the explosion or by remnant objects such as a pulsar wind nebula or microquasar.
Results obtained in very-high-energy (VHE; E > 100 GeV) gamma-ray observations performed with the H.E.S.S. telescope array are used to investigate particle acceleration processes in the vicinity of the young massive stellar cluster Westerlund 1 (Wd 1
Massive stellar clusters have recently been hypothesised as candidates for the acceleration of hadronic cosmic rays up to PeV energies. Previously, the H.E.S.S. Collaboration has reported about very extended $gamma$-ray emission around Westerlund 1,
The Galactic TeV $gamma$-ray source HESS$,$J1804$-$216 is currently an unidentified source. In an attempt to unveil its origin, we present here the most detailed study of interstellar gas using data from the Mopra Southern Galactic Plane CO Survey, 7
We have made new CO observations of two molecular clouds, which we call jet and arc clouds, toward the stellar cluster Westerlund 2 and the TeV gamma-ray source HESS J1023-575. The jet cloud shows a linear structure from the position of Westerlund 2
Furukawa et al. 2009 reported the existence of a large mass of molecular gas associated with the super star cluster Westerlund 2 and the surrounding HII region RCW49, based on a strong morphological correspondence between NANTEN2 12CO(J=2-1) emission