ﻻ يوجد ملخص باللغة العربية
We investigate nonlinear transport in electronic Fabry-Perot interferometers in the integer quantum Hall regime. For interferometers sufficiently large that Coulomb blockade effects are absent, a checkerboard-like pattern of conductance oscillations as a function of dc bias and perpendicular magnetic field is observed. Edge-state velocities extracted from the checkerboard data are compared to model calculations and found to be consistent with a crossover from skipping orbits at low fields to E x B drift at high fields. Suppression of visibility as a function of bias and magnetic field is accounted for by including energy- and field-dependent dephasing of edge electrons.
A fabrication method for electronic quantum Hall Fabry-Perot interferometers (FPI) is presented. Our method uses a combination of e-beam lithography and low-damage dry-etching to produce the FPIs and minimize the excitation of charged traps or deposi
A Fabry-Perot-type interferometer is experimentally realized for electrons in a semiconductor device. A special experimental geometry creates interference conditions for co-propagating electrons in quantum Hall edge states, which results in oscillati
The advent of few-layer graphenes has given rise to a new family of two-dimensional systems with emergent electronic properties governed by relativistic quantum mechanics. The multiple carbon sublattices endow the electronic wavefunctions with pseudo
Quantum interferometers are powerful tools for probing the wave-nature and exchange statistics of indistinguishable particles. Of particular interest are interferometers formed by the chiral, one-dimensional (1D) edge channels of the quantum Hall eff
We propose an intrinsic 3D Fabry-Perot type interferometer, coined higher-order interferometer, that utilizes the chiral hinge states of second-order topological insulators and cannot be equivalently mapped to 2D space because of higher-order topolog