ﻻ يوجد ملخص باللغة العربية
This paper presents the analysis of candidate quiescent low mass xray binarie (qLMXBs) observed during a short Chandra/ACIS observation of the globular cluster (GC) NGC 6304. Two out of the three candidate qLMXBs of this cluster, XMMU 171433-292747 and XMMU 171421-292917, lie within the field of view. This permits comparison with the discovery observation of these sources. The one in the GC core -- XMMU 171433-292747 -- is spatially resolved into two separate X-ray sources, one of which is consistent with a pure H-atmosphere qLMXB, and the other is an X-ray power-law spectrum source. These two spectral components separately account for those observed from XMMU 171433-292747 in its discovery observation. We find that the observed flux and spectral parameters of the H-atmosphere spectral components are consistent with the previous observation, as expected from a qLMXB powered by deep crustal heating. XMMU 171421-292917 also has neutron star atmosphere spectral parameters consistent with those in the XMM-Newton observation and the observed flux has decreased by a factor 0.54^{+0.30}_{-0.24}.
We report the search for low-mass X-ray binaries in quiescence (qLMXBs) in the globular cluster NGC 6304 using XMM observations. We present the spectral analysis leading to the identification of three candidate qLMXBs within the field of this globula
This paper reports the search for quiescent low-mass X-ray binaries (qLMXBs) in the globular cluster (GC) NGC 6553 using an XMM-Newton observation designed specifically for that purpose. We spectrally identify one candidate qLMXB in the core of the c
We present a wide field study of the Globular Clusters/Low Mass X-ray Binaries connection in the cD elliptical NGC1399, combining HST/ACS and Chandra high resolution data. We find evidence that LMXB formation likelihood is influenced by GCs structura
We present a recent Chandra observation of the quiescent low-mass X-ray binary containing a neutron star, located in the globular cluster M30. We fit the thermal emission from the neutron star to extract its mass and radius. We find no evidence of fl
Galactic and extragalactic studies have shown that metal-rich globular clusters (GCs) are approximately three times more likely to host bright low-mass X-ray binaries (LMXBs) than metal-poor GCs. There is no satisfactory explanation for this metallic