ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition between electron localisation and antilocalisation in graphene

495   0   0.0 ( 0 )
 نشر من قبل A. K. Savchenko
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The wave nature of electrons in low-dimensional structures manifests itself in conventional electrical measurements as a quantum correction to the classical conductance. This correction comes from the interference of scattered electrons which results in electron localisation and therefore a decrease of the conductance. In graphene, where the charge carriers are chiral and have an additional (Berry) phase of pi, the quantum interference is expected to lead to anti-localisation: an increase of the conductance accompanied by negative magnetoconductance (a decrease of conductance in magnetic field). Here we observe such negative magnetoconductance which is a direct consequence of the chirality of electrons in graphene. We show that graphene is a unique two-dimensional material in that, depending on experimental conditions, it can demonstrate both localisation and anti-localisation effects. We also show that quantum interference in graphene can survive at unusually high temperatures, up to T~200 K.



قيم البحث

اقرأ أيضاً

We have performed the first experimental investigation of quantum interference corrections to the conductivity of a bilayer graphene structure. A negative magnetoresistance - a signature of weak localisation - is observed at different carrier densiti es, including the electro-neutrality region. It is very different, however, from the weak localisation in conventional two-dimensional systems. We show that it is controlled not only by the dephasing time, but also by different elastic processes that break the effective time-reversal symmetry and provide invervalley scattering.
Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems must be insulating. The existence of a metallic state for such a wide range of 2D systems thus reveals a wide gap in our understanding of 2D transport that has become more important as research in 2D systems expands. A key to understanding the 2D metallic state is the metal-insulator transition (MIT). In this report, we demonstrate the existence of a disorder induced MIT in functionalized graphene, a model 2D system. Magneto-transport measurements show that weak-localization overwhelmingly drives the transition, in contradiction to theoretical assumptions that enhanced electron-electron interactions dominate. These results provide the first detailed picture of the nature of the transition from the metallic to insulating states of a 2D system.
Electron-electron interactions (EEIs) in 2D van der Waals structures is one of the topics with high current interest in physics. We report the observation of a negative parabolic magnetoresistance (MR) in multilayer 2D semiconductor InSe beyond the l ow-field weak localization/antilocalization regime, and provide evidence for the EEI origin of this MR behavior. Further, we analyze this negative parabolic MR and other observed quantum transport signatures of EEIs (temperature dependent conductance and Hall coefficient) within the framework of Fermi liquid theory and extract the gate voltage tunable Fermi liquid parameter $F_0^sigma$ which quantifies the electron spin-exchange interaction strength.
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moir{e} pattern inherent of twisted bilayer graphene taking place at twist angles $theta$ below a crossover angle $theta^{star}=1.2^{circ}$. The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
We show that the optical excitation of graphene with polarized light leads to the pure valley current where carriers in the valleys counterflow. The current in each valley originates from asymmetry of optical transitions and electron scattering by im purities owing to the warping of electron energy spectrum. The valley current has strong polarization dependence, its direction is opposite for normally incident beams of orthogonal linear polarizations. In undoped graphene on a substrate with high susceptibility, electron-electron scattering leads to an additional contribution to the valley current that can dominate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا