ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for Small-Scale Clumpiness in Orion and W3 High-Mass Star-Forming Regions

299   0   0.0 ( 0 )
 نشر من قبل Lev Pirogov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of distinct positions in Orion and W3 revealed ripples on the HCN(1-0), HCO^+(1-0) and CO(1-0) line profiles which can be result of emission of large number of unresolved thermal clumps in the beam that move with random velocities. The total number of such clumps are ~(0.4-4) 10^5 for the areas with linear sizes ~0.1-0.5 pc.



قيم البحث

اقرأ أيضاً

140 - L.E.Pirogov , I.I.Zinchenko 2009
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-ma ss star formation. In some cases, ripples were detected in the line profiles, which could be due to the presence of a large number of unresolved small clumps in the telescope beam. The number of clumps for regions with linear scales of ~0.2-0.5 pc is determined using an analytical model and detailed calculations for a clumpy cloud model; this number varies in the range: ~2 10^4-3 10^5, depending on the source. The clump densities range from ~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal energy of the gas in the model clumps is much higher than their gravitational energy. Their mean lifetimes can depend on the inter-clump collisional rates, and vary in the range ~10^4-10^5 yr. These structures are probably connected with density fluctuations due to turbulence in high-mass star-forming regions.
Hydrogen fluoride has been established to be an excellent tracer of molecular hydrogen in diffuse clouds. In denser environments, however, the HF abundance has been shown to be approximately two orders of magnitude lower. We present Herschel/HIFI obs ervations of HF J=1-0 toward two high-mass star formation sites, NGC6334 I and AFGL 2591. In NGC6334 I the HF line is seen in absorption in foreground clouds and the source itself, while in AFGL 2591 HF is partially in emission. We find an HF abundance with respect to H2 of 1.5e-8 in the diffuse foreground clouds, whereas in the denser parts of NGC6334 I, we derive a lower limit on the HF abundance of 5e-10. Lower HF abundances in dense clouds are most likely caused by freeze out of HF molecules onto dust grains in high-density gas. In AFGL 2591, the view of the hot core is obstructed by absorption in the massive outflow, in which HF is also very abundant 3.6e-8) due to the desorption by sputtering. These observations provide further evidence that the chemistry of interstellar fluorine is controlled by freeze out onto gas grains.
(Context) Many physical parameters change with time in star forming regions. Here we attempt to correlate changes in infall and outflow motions in high mass star forming regions with evolutionary stage using JCMT observations. (Aims) From a sample of 45 high mass star forming regions in three phases of evolution, we investigate the presence of established infall and outflow tracers to determine whether there are any trends attributable to the age of the source. (Methods) We obtained JCMT observations of HCO+/H13CO+ J=4-3 to trace large scale infall, and SiO J=8-7 to trace recent outflow activity. We compare the infall and outflow detections to the evolutionary stage of the host source (high mass protostellar objects, hypercompact HII regions and ultracompact HII regions). We also note that the integrated intensity of SiO varies with the full width at half maximum of the H13CO+. (Results) We find a surprising lack of SiO detections in the middle stage (Hypercompact HII regions), which may be due to an observational bias. When SiO is detected, we find that the integrated intensity of the line increases with evolutionary stage. We also note that all of the sources with infall signatures onto Ultracompact HII regions have corresponding outflow signatures as well.
We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic centre for methyl formate, HCOOCH$_{3}$, and its isotopologues H$^{13}$COOCH$_{3}$ and HCOO$^{13}$CH$_{3}$. The observations were carried ou t with the APEX telescope in the frequency range 283.4--287.4~GHz. Based on the APEX observations, we report tentative detections of the $^{13}$C-methyl formate isotopologue HCOO$^{13}$CH$_{3}$ towards the following four massive star-forming regions: Sgr~B2(N-LMH), NGC~6334~IRS~1, W51 e2 and G19.61-0.23. In addition, we have used the 1~mm ALMA science verification observations of Orion-KL and confirm the detection of the $^{13}$C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the $^{12}$C/$^{13}$C isotope ratio in methyl formate toward Orion-KL Compact Ridge and Hot Core-SW components (68.4$pm$10.1 and 71.4$pm$7.8, respectively) are, for both the $^{13}$C-methyl formate isotopologues, commensurate with the average $^{12}$C/$^{13}$C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the $^{12}$C/$^{13}$C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H$^{13}$COOCH$_{3}$ and HCOO$^{13}$CH$_{3}$ species. New spectroscopic data for both isotopomers H$^{13}$COOCH$_{3}$ and HCOO$^{13}$CH$_{3}$, presented in this study, has made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.
319 - A. Sanchez-Monge 2013
Theoretical models suggest that massive stars form via disk-mediated accretion, with bipolar outflows playing a fundamental role. A recent study toward massive molecular outflows has revealed a decrease of the SiO line intensity as the object evolves . The present study aims at characterizing the variation of the molecular outflow properties with time, and at studying the SiO excitation conditions in outflows associated with massive YSOs. We used the IRAM30m telescope to map 14 massive star-forming regions in the SiO(2-1), SiO(5-4) and HCO+(1-0) outflow lines, and in several dense gas and hot core tracers. Hi-GAL data was used to improve the spectral energy distributions and the L/M ratio, which is believed to be a good indicator of the evolutionary stage of the YSO. We detect SiO and HCO+ outflow emission in all the sources, and bipolar structures in six of them. The outflow parameters are similar to those found toward other massive YSOs. We find an increase of the HCO+ outflow energetics as the object evolve, and a decrease of the SiO abundance with time, from 10^(-8) to 10^(-9). The SiO(5-4) to (2-1) line ratio is found to be low at the ambient gas velocity, and increases as we move to high velocities, indicating that the excitation conditions of the SiO change with the velocity of the gas (with larger densities and/or temperatures for the high-velocity gas component). The properties of the SiO and HCO+ outflow emission suggest a scenario in which SiO is largely enhanced in the first evolutionary stages, probably due to strong shocks produced by the protostellar jet. As the object evolves, the power of the jet would decrease and so does the SiO abundance. During this process, however, the material surrounding the protostar would have been been swept up by the jet, and the outflow activity, traced by entrained molecular material (HCO+), would increase with time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا