ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray emission from Z CMa during an FUor-like outburst and the detection of its X-ray jet

403   0   0.0 ( 0 )
 نشر من قبل Beate Stelzer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Stelzer




اسأل ChatGPT حول البحث

Accretion shocks have been recognized as important X-ray emission mechanism for pre-main sequence stars. Yet the X-ray properties of FUor outbursts, events that are caused by violent accretion, have been given little attention. We have observed the FUor object Z CMa during optical outburst and quiescence with Chandra. No significant changes in X-ray brightness and spectral shape are found, suggesting that the X-ray emission is of coronal nature. Due to the binary nature of Z CMa the origin of the X-ray source is ambiguous. However, the moderate hydrogen column density derived from our data makes it unlikely that the embedded primary star is the X-ray source. The secondary star, which is the FUor object, is thus responsible for both the X-ray emission and the presently ongoing accretion outburst, which seem however to be unrelated phenomena. The secondary is also known to drive a large outflow and jet, that we detect here for the first time in X-rays. The distance of the X-ray emitting outflow source to the central star is higher than in jets of low-mass stars.



قيم البحث

اقرأ أيضاً

We present an analysis of the XMM-Newton observation of the symbiotic star AG Peg, obtained after the end of its 2015 outburst. The X-ray emission of AG Peg is soft and of thermal origin. AG Peg is an X-ray source of class beta of the X-ray sources a mongst the symbiotic stars, whose X-ray spectrum is well matched by a two-temperature optically-thin plasma emission (kT_1 ~ 0.14 keV and kT_2 ~ 0.66 keV). The X-ray emission of the class beta sources is believed to originate from colliding stellar winds (CSW) in binary system. If we adopt the CSW picture, the theoretical CSW spectra match well the observed properties of the XMM-Newton spectra of AG Peg. However, we need a solid evidence that a massive-enough hot-star wind is present in the post-outburst state of AG Peg to proof the validity of the CSW picture for this symbiotic binary. No short-term X-ray variability is detected while the UV emission of AG Peg shows stochastic variability (flickering) on time-scales of minutes and hours.
79 - Devon Clautice 2016
Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phenomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an increasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and HST observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observations, as it is one of the longest such features seen in the radio, near-IR/optical and X-ray bands. Several independent lines of evidence, including the X-ray and broadband spectral shape as well as the implied velocity of the approaching hotspot, lead us to strongly disfavor the EC/CMB model and instead favor a two-component synchrotron model to explain the observed X-ray emission for several jet components. Future observations with NuSTAR, HST, and Chandra will allow us to further constrain the emission mechanisms.
We report on the X-ray spectral (using XMM-Newton data) and timing behavior (using XMM-Newton and Rossi X-ray Timing Explorer [RXTE] data) of the very faint X-ray transient and black hole system Swift J1357.2-0933 during its 2011 outburst. The XMM-Ne wton X-ray spectrum of this source can be adequately fitted with a soft thermal component with a temperature of ~0.22 keV (using a disc model) and a hard, non-thermal component with a photon index of ~1.6 when using a simple power-law model. In addition, an edge at ~ 0.73 keV is needed likely due to interstellar absorption. During the first RXTE observation we find a 6 mHz quasi-periodic oscillation (QPO) which is not present during any of the later RXTE observations or during the XMM-Newton observation which was taken 3 days after the first RXTE observation. The nature of this QPO is not clear but it could be related to a similar QPO seen in the black hole system H 1743-322 and to the so-called 1 Hz QPO seen in the dipping neutron-star X-ray binaries (although this later identification is quite speculative). The observed QPO has similar frequencies as the optical dips seen previously in this source during its 2011 outburst but we cannot conclusively determine that they are due to the same underlying physical mechanism. Besides the QPO, we detect strong band-limited noise in the power-density spectra of the source (as calculated from both the RXTE and the XMM-Newton data) with characteristic frequencies and strengths very similar to other black hole X-ray transients when they are at low X-ray luminosities. We discuss the spectral and timing properties of the source in the context of the proposed very high inclination of this source. We conclude that all the phenomena seen from the source cannot, as yet, be straightforwardly explained neither by an edge-on configuration nor by any other inclination configuration of the orbit.
277 - Yael Naze 2014
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to all a vailable exposures of known massive magnetic stars (over 100 exposures covering ~60% of stars compiled in the catalog of Petit et al. 2013). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss-rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower-Mdot B stars and flattens for the more luminous, higher-Mdot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g. higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest some temperature stratification to exist in massive stars magnetospheres.
The massive binary system Eta Carinae is characterized by intense colliding winds that form shocks and emit X-rays. The system is highly eccentric ($esimeq0.9$), resulting in modulated X-ray emission during its 5.54 year orbit. The X-ray flux increas es in the months prior to periastron passage, exhibiting strong flares, then rapidly declines to a flat minimum lasting a few weeks, followed by a gradual recovery. We present Neutron Star Interior Composition Explorer (NICER) telescope spectra obtained before, during, and after the 2020 X-ray minimum, and perform spectral analysis to establish the temporal behavior of X-ray flux and X-ray-absorbing column density ($N_{rm H}(t)$) for the 2-10 keV and 5-10 keV energy ranges. The latter range is dominated by the stellar wind collision region and, therefore, these spectral parameters - in particular, $N_{rm H}(t)$ - serves as a potentially stringent constraint on the binary orientation. We compare the observed $N_{rm H}(t)$ results to the behavior predicted by a simple geometrical model in an attempt to ascertain which star is closer to us at periastron: the more massive primary ($omega simeq 240$-$270^circ$), or the secondary ($omega simeq 90^circ$). We find that the variations in column density, both far from periastron and around periastron passage, support the latter configuration ($omega simeq 90^circ$). The 2020 X-ray minimum showed the fastest recovery among the last five minima, providing additional evidence for a recent weakening of the primary stars wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا