ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconciling Model Selection and Prediction

126   0   0.0 ( 0 )
 نشر من قبل Guido Consonni
 تاريخ النشر 2009
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that there is a dichotomy in the performance of model selectors. Those that are consistent (having the oracle property) do not achieve the asymptotic minimax rate for prediction error. We look at this phenomenon closely, and argue that the set of parameters on which this dichotomy occurs is extreme, even pathological, and should not be considered when evaluating model selectors. We characterize this set, and show that, when such parameters are dismissed from consideration, consistency and asymptotic minimaxity can be attained simultaneously.



قيم البحث

اقرأ أيضاً

Estimation of the prediction error of a linear estimation rule is difficult if the data analyst also use data to select a set of variables and construct the estimation rule using only the selected variables. In this work, we propose an asymptotically unbiased estimator for the prediction error after model search. Under some additional mild assumptions, we show that our estimator converges to the true prediction error in $L^2$ at the rate of $O(n^{-1/2})$, with $n$ being the number of data points. Our estimator applies to general selection procedures, not requiring analytical forms for the selection. The number of variables to select from can grow as an exponential factor of $n$, allowing applications in high-dimensional data. It also allows model misspecifications, not requiring linear underlying models. One application of our method is that it provides an estimator for the degrees of freedom for many discontinuous estimation rules like best subset selection or relaxed Lasso. Connection to Steins Unbiased Risk Estimator is discussed. We consider in-sample prediction errors in this work, with some extension to out-of-sample errors in low dimensional, linear models. Examples such as best subset selection and relaxed Lasso are considered in simulations, where our estimator outperforms both $C_p$ and cross validation in various settings.
126 - Sylvain Arlot 2010
We consider the problem of choosing between several models in least-squares regression with heteroscedastic data. We prove that any penalization procedure is suboptimal when the penalty is a function of the dimension of the model, at least for some t ypical heteroscedastic model selection problems. In particular, Mallows Cp is suboptimal in this framework. On the contrary, optimal model selection is possible with data-driven penalties such as resampling or $V$-fold penalties. Therefore, it is worth estimating the shape of the penalty from data, even at the price of a higher computational cost. Simulation experiments illustrate the existence of a trade-off between statistical accuracy and computational complexity. As a conclusion, we sketch some rules for choosing a penalty in least-squares regression, depending on what is known about possible variations of the noise-level.
153 - Zhao Ren , Harrison H. Zhou 2012
Discussion of Latent variable graphical model selection via convex optimization by Venkat Chandrasekaran, Pablo A. Parrilo and Alan S. Willsky [arXiv:1008.1290].
124 - Xin Gao , Grace Y. Yi 2012
This paper investigates the property of the penalized estimating equations when both the mean and association structures are modelled. To select variables for the mean and association structures sequentially, we propose a hierarchical penalized gener alized estimating equations (HPGEE2) approach. The first set of penalized estimating equations is solved for the selection of significant mean parameters. Conditional on the selected mean model, the second set of penalized estimating equations is solved for the selection of significant association parameters. The hierarchical approach is designed to accommodate possible model constraints relating the inclusion of covariates into the mean and the association models. This two-step penalization strategy enjoys a compelling advantage of easing computational burdens compared to solving the two sets of penalized equations simultaneously. HPGEE2 with a smoothly clipped absolute deviation (SCAD) penalty is shown to have the oracle property for the mean and association models. The asymptotic behavior of the penalized estimator under this hierarchical approach is established. An efficient two-stage penalized weighted least square algorithm is developed to implement the proposed method. The empirical performance of the proposed HPGEE2 is demonstrated through Monte-Carlo studies and the analysis of a clinical data set.
145 - Emilie Devijver 2015
We study a dimensionality reduction technique for finite mixtures of high-dimensional multivariate response regression models. Both the dimension of the response and the number of predictors are allowed to exceed the sample size. We consider predicto r selection and rank reduction to obtain lower-dimensional approximations. A class of estimators with a fast rate of convergence is introduced. We apply this result to a specific procedure, introduced in [11], where the relevant predictors are selected by the Group-Lasso.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا