ﻻ يوجد ملخص باللغة العربية
The nonlocal correlations of multipartite entangled states can be reproduced by a classical model if sufficiently many parties join together or if sufficiently many parties broadcast their measurement inputs. The maximal number m of groups and the minimal number k of broadcasting parties that allow for the reproduction of a given set of correlations quantify their multipartite nonlocal content. We show how upper-bounds on m and lower-bounds on k can be computed from the violation of the Mermin-Svetlichny inequalities. While n-partite GHZ states violate these inequalities maximally, we find that W states violate them only by a very small amount.
The celebrated Einstein-Podolsky-Rosen quantum steering has a complex structure in the multipartite scenario. We show that a naively defined criterion for multipartite steering allows, like in Bell nonlocality, for a contradictory effect whereby loca
As with entanglement, different forms of Bell nonlocality arise in the multipartite scenario. These can be defined in terms of relaxations of the causal assumptions in local hidden-variable theories. However, a characterisation of all the forms of mu
Everyday experience supports the existence of physical properties independent of observation in strong contrast to the predictions of quantum theory. In particular, existence of physical properties that are independent of the measurement context is p
Recently, Halder emph{et al.} [S. Halder emph{et al.}, Phys. Rev. Lett. textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable
We present a generic method to construct a product basis exhibiting Nonlocality Without Entanglement with $n$ parties each holding a system of dimension at least $n-1$. This basis is generated via a quantum circuit made of control-Discrete Fourier Tr