ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space

196   0   0.0 ( 0 )
 نشر من قبل Michel Ferrero
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an approach to the normal state of cuprate superconductors which is based on a minimal cluster extension of dynamical mean-field theory. Our approach is based on an effective two-impurity model embedded in a self-consistent bath. The two degrees of freedom of this effective model can be associated to the nodal and antinodal regions of momentum space. We find a metal-insulator transition which is selective in momentum space: At low doping quasiparticles are destroyed in the antinodal region, while they remain protected in the nodal region, leading to the formation of apparent Fermi arcs. We compare our results to tunneling and angular-resolved photoemission experiments on cuprates. At very low energy, a simple description of this transition can be given using rotationally invariant slave bosons.



قيم البحث

اقرأ أيضاً

We outline a general mechanism for Orbital-selective Mott transition (OSMT), the coexistence of both itinerant and localized conduction electrons, and show how it can take place in a wide range of realistic situations, even for bands of identical wid th and correlation, provided a crystal field splits the energy levels in manifolds with different degeneracies and the exchange coupling is large enough to reduce orbital fluctuations. The mechanism relies on the different kinetic energy in manifolds with different degeneracy. This phase has Curie-Weiss susceptibility and non Fermi-liquid behavior, which disappear at a critical doping, all of which is reminiscent of the physics of the pnictides.
62 - Chandra M. Varma 2019
The proposed loop-current order in cuprates cannot give the observed pseudogap and the Fermi-arcs because it preserves translation symmetry. A modification to a periodic arrangement of the four possible orientations of the order parameter with a larg e period of between about 12 to 30 lattice constants is proposed and shown in a simple and controlled calculation to give one-particle spectra with every feature as in the ARPES experiments. The results follow from (1) the currents at the boundaries of the periodic domains with similar topology as the Affleck-Marston flux phase, and (2) the mixing introduced by the boundary currents between the states near the erstwhile Fermi-surface and the ghost Fermi-surfaces which are displaced from it by mini-reciprocal vectors. The proposed idea can be ruled out or verified by high resolution diffraction or imaging experiments. It does not run afoul of the variety of different experiments consistent with the loop-current order as well as the theory of the marginal Fermi-liquid and d-wave superconductivity based on quantum-critical fluctuations of the loop current order.
We analyze the pseudogap phenomenon of hole-doped cuprates via a Feynman-diagrammatic inspection of the Hubbard model. Our approach captures the pivotal interplay between Mott localization and Fermi surface topology beyond weak-coupling spin fluctuat ions, which open a spectral gap near hot spots. We show that strong coupling and particle-hole asymmetry give rise to another mechanism: the spin-fermion vertex develops a large imaginary part. While its real part always suppresses the electronic lifetime, the imaginary part has a twofold effect. For antinodal fermions a gap opening is boosted; conversely, around the node Fermi arcs are protected.
273 - Yu Ni , Ya-Min Quan , Jingyi Liu 2019
The electronic states near the Fermi level of recently discovered superconductor Ba$_2$CuO$_{4-delta}$ consist primarily of the Cu $d_{x^2-y^2}$ and $d_{3z^2-r^2}$ orbitals. We investigate the electronic correlation effect and the orbital polarizatio n of an effective two-orbital Hubbard model mimicking the low-energy physics of Ba$_2$CuO$_{4-delta}$ in the hole-rich regime by utilizing the dynamical mean-field theory with the Lanczos method as the impurity solver. We find that the hole-overdoped Ba$_2$CuO$_{4-delta}$ with $3d^8$ (Cu$^{3+}$) is in the orbital-selective Mott phase (OSMP) at half-filling, and the typical two-orbital feature remains in Ba$_2$CuO$_{4-delta}$ when the electron filling approaches $n_esim 2.5$, which closely approximates to the experimental hole doping for the emergence of the high-$T_c$ superconductivity. We also obtain that the orbital polarization is very stable in the OSMP, and the multiorbital correlation can drive orbital polarization transitions. These results indicate that in hole-overdoped Ba$_2$CuO$_{4-delta}$ the OSMP physics and orbital polarization, local magnetic moment, and spin or orbital fluctuations still exist. We propose that our present results are also applicable to Sr$_2$CuO$_{4-delta}$ and other two-orbital cuprates, demanding an unconventional multiorbital superconducting scenario in hole-overdoped high-$T_c$ cuprates.
We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hunds metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density an d Hubbard $U$, at robust Hunds coupling. We demonstrate that this transition is preempted by charge fluctuations and the emergence of free spinless fermions, as opposed to the magnetically-driven Mott transition. The Luttinger correlation exponent is shown to have a universal value in the strong-coupling phase, whereas it is interaction dependent at intermediate couplings. At weak coupling we find a second transition from a normal metal to the intermediate-coupling phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا