ﻻ يوجد ملخص باللغة العربية
We summarize some of the compelling new scientific opportunities for understanding stars and stellar systems that can be enabled by sub-mas angular resolution, UV/Optical spectral imaging observations, which can reveal the details of the many dynamic processes (e.g., variable magnetic fields, accretion, convection, shocks, pulsations, winds, and jets) that affect their formation, structure, and evolution. These observations can only be provided by long-baseline interferometers or sparse aperture telescopes in space, since the aperture diameters required are in excess of 500 m - a regime in which monolithic or segmented designs are not and will not be feasible - and since they require observations at wavelengths (UV) not accessible from the ground. Two mission concepts which could provide these invaluable observations are NASAs Stellar Imager (SI; http://hires.gsfc.nasa.gov/si/) interferometer and ESAs Luciola sparse aperture hypertelescope, which each could resolve hundreds of stars and stellar systems. These observatories will also open an immense new discovery space for astrophysical research in general and, in particular, for Active Galactic Nuclei (Kraemer et al. Decadal Survey Science Whitepaper). The technology developments needed for these missions are challenging, but eminently feasible (Carpenter et al. Decadal Survey Technology Whitepaper) with a reasonable investment over the next decade to enable flight in the 2025+ timeframe. That investment would enable tremendous gains in our understanding of the individual stars and stellar systems that are the building blocks of our Universe and which serve as the hosts for life throughout the Cosmos.
In young dense clusters repeated collisions between massive stars may lead to the formation of a very massive star (above 100 Msun). In the past the study of the long-term evolution of merger remnants has mostly focussed on collisions between low-mas
Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-t
Numerous physical aspects of stellar physics have been presented in Ses- sion 2 and the underlying uncertainties have been tentatively assessed. We try here to highlight some specific points raised after the talks and during the general discus- sion
We present and release the full dataset for the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. This survey used the Submillimeter Array (SMA) to image the 74 known protostars within the Perseus molecular cloud. The
We present continuum and molecular line observations at 230 GHz and 345 GHz from the Sub-millimeter Array (SMA) toward three protostars in the Perseus L1448N region. The data are from the large project Mass Assembly of Stellar Systems and their Evolu