ﻻ يوجد ملخص باللغة العربية
We compare a variety of lossless image compression methods on a large sample of astronomical images and show how the compression ratios and speeds of the algorithms are affected by the amount of noise in the images. In the ideal case where the image pixel values have a random Gaussian distribution, the equivalent number of uncompressible noise bits per pixel is given by Nbits =log2(sigma * sqrt(12)) and the lossless compression ratio is given by R = BITPIX / Nbits + K where BITPIX is the bit length of the pixel values and K is a measure of the efficiency of the compression algorithm. We perform image compression tests on a large sample of integer astronomical CCD images using the GZIP compression program and using a newer FITS tiled-image compression method that currently supports 4 compression algorithms: Rice, Hcompress, PLIO, and GZIP. Overall, the Rice compression algorithm strikes the best balance of compression and computational efficiency; it is 2--3 times faster and produces about 1.4 times greater compression than GZIP. The Rice algorithm produces 75%--90% (depending on the amount of noise in the image) as much compression as an ideal algorithm with K = 0. The image compression and uncompression utility programs used in this study (called fpack and funpack) are publicly available from the HEASARC web site. A simple command-line interface may be used to compress or uncompress any FITS image file.
We introduce a simple and efficient lossless image compression algorithm. We store a low resolution version of an image as raw pixels, followed by several iterations of lossless super-resolution. For lossless super-resolution, we predict the probabil
Soft compression is a lossless image compression method, which is committed to eliminating coding redundancy and spatial redundancy at the same time by adopting locations and shapes of codebook to encode an image from the perspective of information t
We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model f
We propose a novel joint lossy image and residual compression framework for learning $ell_infty$-constrained near-lossless image compression. Specifically, we obtain a lossy reconstruction of the raw image through lossy image compression and uniforml
We make the following striking observation: fully convolutional VAE models trained on 32x32 ImageNet can generalize well, not just to 64x64 but also to far larger photographs, with no changes to the model. We use this property, applying fully convolu