ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision photometry by telescope defocussing. I. The transiting planetary system WASP-5

181   0   0.0 ( 0 )
 نشر من قبل John Southworth
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-precision photometry of two transit events of the extrasolar planetary system WASP-5, obtained with the Danish 1.54m telescope at ESO La Silla. In order to minimise both random and flat-fielding errors, we defocussed the telescope so its point spread function approximated an annulus of diameter 40 pixels (16 arcsec). Data reduction was undertaken using standard aperture photometry plus an algorithm for optimally combining the ensemble of comparison stars. The resulting light curves have point-to-point scatters of 0.50 mmag for the first transit and 0.59 mmag for the second. We construct detailed signal to noise calculations for defocussed photometry, and apply them to our observations. We model the light curves with the JKTEBOP code and combine the results with tabulated predictions from theoretical stellar evolutionary models to derive the physical properties of the WASP-5 system. We find that the planet has a mass of M_b = 1.637 +/- 0.075 +/- 0.033 Mjup, a radius of R_b = 1.171 +/- 0.056 +/- 0.012 Rjup, a large surface gravity of g_b = 29.6 +/- 2.8 m/s2 and a density of rho_b = 1.02 +/- 0.14 +/- 0.01 rhojup (statistical and systematic uncertainties). The planets high equilibrium temperature of T_eq = 1732 +/- 80 K makes it a good candidate for detecting secondary eclipses.



قيم البحث

اقرأ أيضاً

We present and analyse light curves of four transits of the Southern hemisphere extrasolar planetary system WASP-4, obtained with a telescope defocussed so the radius of each point spread function was 17 arcsec (44 pixels). This approach minimises bo th random and systematic errors, allowing us to achieve scatters of between 0.60 and 0.88 mmag per observation over complete transit events. The light curves are augmented by published observations and analysed using the JKTEBOP code. The results of this process are combined with theoretical stellar model predictions to derive the physical properties of the WASP-4 system. We find that the mass and radius of the planet are M_b = 1.289 {+0.090 -0.090} {+0.039 -0.000} MJup and R_b = 1.371 {+0.032 -0.035} {+0.021 -0.000} RJup, respectively (statistical and systematic uncertainties). These quantities give a surface gravity and density of g_b = 17.03 +0.97 -0.54 m/s2 and rho_b = 0.500 {+0.032 -0.021} {+0.000 -0.008} rhoJup, and fit the trends for short-period extrasolar planets to have relatively high masses and surface gravities. WASP-4 is now one of the best-quantified transiting extrasolar planetary systems, and significant further progress requires improvements to our understanding of the physical properties of low-mass stars.
We present new photometric observations of WASP-15 and WASP-16, two transiting extrasolar planetary systems with measured orbital obliquities but without photometric follow-up since their discovery papers. Our new data for WASP-15 comprise observatio ns of one transit simultaneously in four optical passbands using GROND on the MPG/ESO 2.2m telescope, plus coverage of half a transit from DFOSC on the Danish 1.54m telescope, both at ESO La Silla. For WASP-16 we present observations of four complete transits, all from the Danish telescope. We use these new data to refine the measured physical properties and orbital ephemerides of the two systems. Whilst our results are close to the originally-determined values for WASP-15, we find that the star and planet in the WASP-16 system are both larger and less massive than previously thought.
We present time-series photometric observations of thirteen transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was pr eviously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5 to 1.2 mmag relative to their best-fitting geometric models. We used these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.
We present 13 high-precision and four additional light curves of four bright southern-hemisphere transiting planetary systems: WASP-22, WASP-41, WASP-42 and WASP-55. In the cases of WASP-42 and WASP-55, these are the first follow-up observations sinc e their discovery papers. We present refined measurements of the physical properties and orbital ephemerides of all four systems. No indications of transit timing variations were seen. All four planets have radii inflated above those expected from theoretical models of gas-giant planets; WASP-55b is the most discrepant with a mass of 0.63 Mjup and a radius of 1.34 Rjup. WASP-41 shows brightness anomalies during transit due to the planet occulting spots on the stellar surface. Two anomalies observed 3.1 d apart are very likely due to the same spot. We measure its change in position and determine a rotation period for the host star of 18.6 +/- 1.5 d, in good agreement with a published measurement from spot-induced brightness modulation, and a sky-projected orbital obliquity of lambda = 6 +/- 11 degrees. We conclude with a compilation of obliquity measurements from spot-tracking analyses and a discussion of this technique in the study of the orbital configurations of hot Jupiters.
We present high-precision photometry of five consecutive transits of WASP-18, an extrasolar planetary system with one of the shortest orbital periods known. Through the use of telescope defocussing we achieve a photometric precision of 0.47 to 0.83 m mag per observation over complete transit events. The data are analysed using the JKTEBOP code and three different sets of stellar evolutionary models. We find the mass and radius of the planet to be M_b = 10.43 +/- 0.30 +/- 0.24 Mjup R_b = 1.165 +/- 0.055 +/- 0.014 Rjup (statistical and systematic errors) respectively. The systematic errors in the orbital separation and the stellar and planetary masses, arising from the use of theoretical predictions, are of a similar size to the statistical errors and set a limit on our understanding of the WASP-18 system. We point out that seven of the nine known massive transiting planets (M_b > 3 Mjup) have eccentric orbits, whereas significant orbital eccentricity has been detected for only four of the 46 less massive planets. This may indicate that there are two different populations of transiting planets, but could also be explained by observational biases. Further radial velocity observations of low-mass planets will make it possible to choose between these two scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا