ترغب بنشر مسار تعليمي؟ اضغط هنا

Axion Searches with Helioscopes and astrophysical signatures for axion(-like) particles

167   0   0.0 ( 0 )
 نشر من قبل Theopisti Dafni
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first part reviews the working mechanisms, capabilities and performance of axion helioscopes, including the achieved results so far. The 2nd part is observationally driven. New simulation results obtained with the Geant4 code reconstruct spectral shape of solar X-ray spectra, and their isotropic emission and lateral size. The derived rst mass of the axion(-like) particles is ~10meV. The axion interaction with magnetic field gradient is a generic theoretical suggestion that could reconcile present limits with relevant solar X-ray activity. A short outlook of the experimentally expanding solar axion field is given.



قيم البحث

اقرأ أيضاً

The working principle of axion helioscopes can be behind unexpected solar X-ray emission, being associated with solar magnetic fields, which become the catalyst. Solar axion signals can be transient brightenings as well as continuous radiation. The e nergy range below 1 keV is a window of opportunity for direct axion searches. (In)direct signatures support axions or the like as an explanation of striking behaviour of X-rays from the Sun.
Magnetic field dependent transient solar observations are suggestive for axion-photon oscillations with light axion(-like) particle involvement. Novel dark-moon measurements with the SMART X-ray detectors can be conclusive for radiatively decaying ma ssive exotica like the generic solar Kaluza-Klein axions. Furthermore, the predicted intrinsic strong solar magnetic fields could be the reason of enhanced low energy axion production. Such an axion component could be the as yet unknown origin of the strong quiet Sun X-ray luminosity at energies below 1 keV. Solar axion telescopes should lower their threshold, aiming to copy processes that might occur near the solar surface, be it due to spontaneous or magnetically induced radiative decay of axion(-like) particles. This is motivated also by the recent claim of an axion-like particle detection by the laser experiment PVLAS.
294 - D.S. Akerib , S. Alsum , C. Aquino 2017
The first searches for axions and axion-like particles with the Large Underground Xenon (LUX) experiment are presented. Under the assumption of an axio-electric interaction in xenon, the coupling constant between axions and electrons, gAe is tested, using data collected in 2013 with an exposure totalling 95 live-days $times$ 118 kg. A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5 $times$ 10$^{-12}$ (90% C.L.) for solar axions. Assuming the DFSZ theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV/c$^{2}$, while for the KSVZ description masses above 36.6 eV/c$^{2}$ are excluded. For galactic axion-like particles, values of gAe larger than 4.2 $times$ 10$^{-13}$ are excluded for particle masses in the range 1-16 keV/c$^{2}$. These are the most stringent constraints to date for these interactions.
The growing interest in axion-like particles (ALPs) stems from the fact that they provide successful theoretical explanations of physics phenomena, from the anomaly of the CP-symmetry conservation in strong interactions to the observation of an unexp ectedly large TeV photon flux from astrophysical sources, at distances where the strong absorption by the intergalactic medium should make the signal very dim. In this latter condition, which is the focus of this review, a possible explanation is that TeV photons convert to ALPs in the presence of strong and/or extended magnetic fields, such as those in the core of galaxy clusters or around compact objects, or even those in the intergalactic space. This mixing affects the observed ${gamma}$-ray spectrum of distant sources, either by signal recovery or the production of irregularities in the spectrum, called wiggles, according to the specific microscopic realization of the ALP and the ambient magnetic field at the source, and in the Milky Way, where ALPs may be converted back to ${gamma}$ rays. ALPs are also proposed as candidate particles for the Dark Matter. Imaging Atmospheric Cherenkov telescopes (IACTs) have the potential to detect the imprint of ALPs in the TeV spectrum from several classes of sources. In this contribution, we present the ALP case and review the past decade of searches for ALPs with this class of instruments.
The excess of electron recoil events seen by the XENON1T experiment has been interpreted as a potential signal of axion-like particles (ALPs), either produced in the Sun, or constituting part of the dark matter halo of the Milky Way. It has also been explained as a consequence of trace amounts of tritium in the experiment. We consider the evidence for the solar and dark-matter ALP hypotheses from the combination of XENON1T data and multiple astrophysical probes, including horizontal branch stars, red giants, and white dwarfs. We briefly address the influence of ALP decays and supernova cooling. While the different datasets are in clear tension for the case of solar ALPs, all measurements can be simultaneously accommodated for the case of a sub-dominant fraction of dark-matter ALPs. Nevertheless, this solution requires the tuning of several a priori unknown parameters, such that for our choices of priors a Bayesian analysis shows no strong preference for the ALP interpretation of the XENON1T excess over the background hypothesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا