ترغب بنشر مسار تعليمي؟ اضغط هنا

Helioseismic Signature of Chromospheric Downflows in Acoustic Travel-Time Measurements from Hinode

135   0   0.0 ( 0 )
 نشر من قبل Kaori Nagashima
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kaori Nagashima




اسأل ChatGPT حول البحث

We report on a signature of chromospheric downflows in two emerging-flux regions detected by time-distance helioseismology analysis. We use both chromospheric intensity oscillation data in the Ca II H line and photospheric Dopplergrams in the Fe I 557.6nm line obtained by Hinode/SOT for our analyses. By cross-correlating the Ca II oscillation signals, we have detected a travel-time anomaly in the plage regions; outward travel times are shorter than inward travel times by 0.5-1 minute. However, such an anomaly is absent in the Fe I data. These results can be interpreted as evidence of downflows in the lower chromosphere. The downflow speed is estimated to be below 10 km/s. This result demonstrates a new possibility of studying chromospheric flows by time-distance analysis.



قيم البحث

اقرأ أيضاً

An active region filament in the upper chromosphere is studied using spectropolarimetric data in He I 10830 A from the GREGOR telescope. A Milne-Eddingon based inversion of the Unno-Rachkovsky equations is used to retrieve the velocity and the magnet ic field vector of the region. The plasma velocity reaches supersonic values closer to the feet of the filament barbs and coexist with a slow velocity component. Such supersonic velocities result from the acceleration of the plasma as it drains from the filament spine through the barbs. The line-of-sight magnetic fields have strengths below 200 G in the filament spine and in the filament barbs where fast downflows are located, their strengths range between 100 - 700 G.
380 - A.C. Birch , L. Gizon 2010
Time-distance helioseismology is a technique for measuring the time for waves to travel from one point on the solar surface to another. These wave travel times are affected by advection by subsurface flows. Inferences of plasma flows based on observe d travel times depend critically on the ability to accurately model the effects of subsurface flows on time-distance measurements. We present a Born approximation based computation of the sensitivity of time distance travel times to weak, steady, inhomogeneous subsurface flows. Three sensitivity functions are obtained, one for each component of the 3D vector flow. We show that the depth sensitivity of travel times to horizontally uniform flows is given approximately by the kinetic energy density of the oscillation modes which contribute to the travel times. For flows with strong depth dependence, the Born approximation can give substantially different results than the ray approximation.
The purpose of deep-focusing time--distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the sola r surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time--distance helioseismology.
Downflows on the solar surface are suspected to play a major role in the dynamics of the convection zone. We investigate the existence of the long-lasting downflows whose effects influence the interior of the Sun and the outer layers. We study the sets of Dopplergrams and magnetograms observed with SDO and Hinode spacecrafts and a MHD simulation. All of the aligned sequences, which were corrected from the satellite motions and tracked with the differential rotation, were used to detect the long-lasting downflows in the quiet-Sun at the disc centre. To learn about the structure of the flows below the solar surface, the time-distance local helioseismology was used. The inspection of the 3D data cube (x, y, t) of the 24-hour Doppler sequence allowed us to detect 13 persistent downflows. Their lifetimes lie in the range between 3.5 and 20 hours with sizes between 2 and 3 and speeds between -0.25 and -0.72 km/s. These persistent downflows are always filled with the magnetic field with an amplitude of up to 600 G. The helioseismic inversion allows us to describe the persistent downflows and compare them to the other (non-persistent) downflows in the field of view. The persistent downflows seem to penetrate much deeper and, in the case of a well-formed vortex, the vorticity keeps its integrity to the depth of about 5 Mm. In the MHD simulation, only sub-arcsecond downflows are detected with no evidence of a vortex comparable in size to observations at the surface of the Sun. The long temporal sequences from the space-borne allow us to show the existence of long-persistent downflows together with the magnetic field. They penetrate inside the Sun but are also connected with the anchoring of coronal loops in the photosphere, indicating a link between downflows and the coronal activity. A link suggests that EUV cyclones over the quiet Sun could be an effective way to heat the corona.
Results from initial helioseismic observations by Solar Optical Telescope onboard Hinode are reported. It has been demonstrated that intensity oscillation data from Broadband Filter Imager can be used for various helioseismic analyses. The k-omega po wer spectra, as well as corresponding time-distance cross-correlation function that promises high-resolution time-distance analysis below 6-Mm travelling distance, were obtained for G-band and CaII-H data. Subsurface supergranular patterns have been observed from our first time-distance analysis. The results show that the solar oscillation spectrum is extended to much higher frequencies and wavenumbers, and the time-distance diagram is extended to much shorter travel distances and times than they were observed before, thus revealing great potential for high-resolution helioseismic observations from Hinode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا