ﻻ يوجد ملخص باللغة العربية
We report on the measurement of four-body recombination rate coefficients in an atomic gas. Our results obtained with an ultracold sample of cesium atoms at negative scattering lengths show a resonant enhancement of losses and provide strong evidence for the existence of a pair of four-body states, which is strictly connected to Efimov trimers via universal relations. Our findings confirm recent theoretical predictions and demonstrate the enrichment of the Efimov scenario when a fourth particle is added to the generic three-body problem.
Three interacting particles form a system which is well known for its complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimovs prediction of a universal set of weakly bound trimer states appearing for three iden
Small weakly-bound droplets determine a number of properties of ultracold Bose and Fermi gases. For example, Efimov trimers near the atom-atom-atom and atom-dimer thresholds lead to enhanced losses from bosonic clouds. Generalizations to four- and hi
Systems of three interacting particles are notorious for their complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimovs prediction of a universal set of bound trimer states appearing for three identical bosons w
We study a one-dimensional quantum problem of two particles interacting with a third one via a scale-invariant subcritically attractive inverse square potential, which can be realized, for example, in a mixture of dipoles and charges confined to one
We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to c