ترغب بنشر مسار تعليمي؟ اضغط هنا

Digital Ecosystems in the Clouds: Towards Community Cloud Computing

241   0   0.0 ( 0 )
 نشر من قبل Gerard Briscoe Mr
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns of privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon, and Microsoft. Community Cloud Computing makes use of the principles of Digital Ecosystems to provide a paradigm for Clouds in the community, offering an alternative architecture for the use cases of Cloud Computing. It is more technically challenging to deal with issues of distributed computing, such as latency, differential resource management, and additional security requirements. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.



قيم البحث

اقرأ أيضاً

Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud v endors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
A primary motivation for our research in digital ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic pr oblems. However, the computing technologies that contribute to these properties have not been made explicit in digital ecosystems research. Here, we discuss how different computing technologies can contribute to providing the necessary self-organising features, including Multi-Agent Systems (MASs), Service-Oriented Architectures (SOAs), and distributed evolutionary computing (DEC). The potential for exploiting these properties in digital ecosystems is considered, suggesting how several key features of biological ecosystems can be exploited in Digital Ecosystems, and discussing how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, considering the self-organised diversity of its evolving agent populations relative to the user request behaviour.
71 - Josh Payne , Ashish Kundu 2019
In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detect ion and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each systems logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.
135 - G. Briscoe , P. De Wilde 2009
A primary motivation for our research in digital ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic pr oblems. However, the computing technologies that contribute to these properties have not been made explicit in digital ecosystems research. Here, we discuss how different computing technologies can contribute to providing the necessary self-organising features, including Multi-Agent Systems, Service-Oriented Architectures, and distributed evolutionary computing. The potential for exploiting these properties in digital ecosystems is considered, suggesting how several key features of biological ecosystems can be exploited in Digital Ecosystems, and discussing how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, considering the self-organised diversity of its evolving agent populations relative to the user request behaviour.
With the proliferation of mobile applications, Mobile Cloud Computing (MCC) has been proposed to help mobile devices save energy and improve computation performance. To further improve the quality of service (QoS) of MCC, cloud servers can be deploye d locally so that the latency is decreased. However, the computational resource of the local cloud is generally limited. In this paper, we design a threshold-based policy to improve the QoS of MCC by cooperation of the local cloud and Internet cloud resources, which takes the advantages of low latency of the local cloud and abundant computational resources of the Internet cloud simultaneously. This policy also applies a priority queue in terms of delay requirements of applications. The optimal thresholds depending on the traffic load is obtained via a proposed algorithm. Numerical results show that the QoS can be greatly enhanced with the assistance of Internet cloud when the local cloud is overloaded. Better QoS is achieved if the local cloud order tasks according to their delay requirements, where delay-sensitive applications are executed ahead of delay-tolerant applications. Moreover, the optimal thresholds of the policy have a sound impact on the QoS of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا