ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin chirality and electric polarization in multiferroic compounds $R$Mn$_2$O$_5$ ($R=$Ho, Er)

354   0   0.0 ( 0 )
 نشر من قبل Shuichi Wakimoto
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polarized neutron diffraction experiments have been performed on multiferroic materials $R$Mn$_{2}$O$_{5}$ ($R=$Ho, Er) under electric fields in the ferroelectric commensurate (CM) and the low-temperature incommensurate (LT-ICM) phases, where the former has the highest electric polarization and the latter has reduced polarization. It is found that, after cooling in electric fields down to the CM phase, the magnetic chirality is proportional to the electric polarization. Also we confirmed that the magnetic chirality can be switched by the polarity of the electric polarization in both the CM and LT-ICM phases. These facts suggest an intimate coupling between the magnetic chirality and the electric polarization. However, upon the transition from the CM to LT-ICM phase, the reduction of the electric polarization is not accompanied by any reduction of the magnetic chirality, implying that the CM and LT-ICM phases contain different mechanisms of the magnetoelectric coupling.



قيم البحث

اقرأ أيضاً

Measurements of ferroelectric polarization and dielectric constant were done on $R$Mn$_2$O$_5$ ($R$=Tb, Dy, and Ho) with applied hydrostatic pressures of up to 18 kbar. At ambient pressure, distinctive anomalies were observed in the temperature profi le of both physical properties at critical temperatures marking the onset of long range AFM order (T$_{N1}$), ferroelectricity (T$_{C1}$) as well as at temperatures when anomalous changes in the polarization, dielectric constant and spin wave commensurability have been previously reported. In particular, the step in the dielectric constant at low temperatures (T$_{C2}$), associated with both a drop in the ferroelectric polarization and an incommensurate magnetic structure, was shown to be suddenly quenched upon passing an $R$-dependent critical pressure. This was shown to correlate with the stabilization of the high ferroelectric polarization state which is coincident with the commensurate magnetic structure. The observation is suggested to be due to a pressure induced phase transition into a commensurate magnetic structure as exemplified by the pressure-temperature ($p$-$T$) phase diagrams constructed in this work. The $p$-$T$ phase diagrams are determined for all three compounds.
131 - F. Yen , C. dela Cruz , B. Lorenz 2007
The magnetic phase diagrams of RMnO3 (R = Er, Yb, Tm, Ho) are investigated up to 14 Tesla via magnetic and dielectric measurements. The stability range of the AFM order below the Neel temperature of the studied RMnO3 extends to far higher magnetic fi elds than previously assumed. Magnetic irreversibility indicating the presence of a spontaneous magnetic moment is found near 50 K for R=Er, Yb, and Tm. At very low temperatures and low magnetic fields the phase boundary defined by the ordering of the rare earth moments is resolved. The sizable dielectric anomalies observed along all phase boundaries are evidence for strong spin-lattice coupling in the hexagonal RMnO3. In HoMnO3 the strong magnetoelastic distortions are investigated in more detail via magnetostriction experiments up to 14 Tesla. The results are discussed based on existing data on magnetic symmetries and the interactions between the Mn-spins, the rare earth moments, and the lattice.
74 - G.R. Blake 2005
We have studied the crystal and magnetic structures of the magnetoelectric materials RMn2O5 (R = Tb, Ho, Dy) using neutron diffraction as a function of temperature. All three materials display incommensurate antiferromagnetic ordering below 40 K, bec oming commensurate on further cooling. For R = Tb, Ho, a commensurate-incommensurate transition takes place at low temperatures. The commensurate magnetic structures have been solved and are discussed in terms of competing exchange interactions. The spin configuration within the ab plane is essentially the same for each system, and the radius of R determines the sign of the magnetic exchange between adjacent planes. The inherent magnetic frustration in these materials is lifted by a small lattice distortion, primarily involving shifts of the Mn3+ cations and giving rise to a canted antiferroelectric phase.
We report the results of our investigation of the physical properties of mixed metal oxides RFe0.5Cr0.5O3 (R = Er and Yb). ErFe0.5Cr0.5O3 undergoes an antiferromagnetic ordering around 270 K followed by spin reorientation (SR) transitions around 150 and 8 K respectively. In contrast, in YbFe0.5Cr0.5O3 a single SR transition is noted at 36 K, below the AFM ordering temperature of 280 K. In ErFe0.5Cr0.5O3, a significant value of magnetic entropy change ({Delta}SM) ~ -12.4 J/kg-K is noted near the 2nd SR transition, however, this value is suppressed in YbFe0.5Cr0.5O3. Temperature dependent dielectric permittivity of ErFe0.5Cr0.5O3 and YbFe0.5Cr0.5O3 at different frequencies, reveal the presence of Debye-like relaxation behaviour in both compounds, which can be due to the effect of charge carrier hopping between localized states of Fe and Cr ions. Temperature dependent Raman scattering studies divulge that spin-phonon coupling plays a crucial role in defining the physical properties of these compounds.
We report the observation of a magnetic polarization of the O,$2p$-states in YMn$_2$O$_5$ through the use of soft X-ray resonant scattering at the oxygen $K$-edge. Remarkably, we find that the temperature dependence of the integrated intensity of thi s signal closely follows the macroscopic electric polarization, and hence is proportional to the ferroelectric order parameter. This is in contrast to the temperature dependence observed at the Mn,$L_3$-edge, which reflects the Mn magnetic order parameter. First principle calculations provide a microscopic understanding of these results and show that a spin-dependent hybridization of O,$2p$- and Mn, 3d-states results in a purely electronic contribution to the ferroelectric polarization, which can exist in the absence of lattice distortions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا