ﻻ يوجد ملخص باللغة العربية
A non-LTE analysis of K I resonance lines at 7664.91 and 7698.97 A was carried out for 15 red giants belonging to three globular clusters of different metallicity (M 4, M 13, and M 15) along with two reference early-K giants (rho Boo and alpha Boo), in order to check whether the K abundances are uniform within a cluster and to investigate the behavior of [K/Fe] ratio at the relevant metallicity range of -2.5 <[Fe/H] < -1. We confirmed that [K/H] (as well as [Fe/H]) is almost homogeneous within each cluster to a precision of < ~0.1 dex, though dubiously large deviations are exceptionally seen for two peculiar stars showing signs of considerably increased turbulence in the upper atmosphere. The resulting [K/Fe] ratios are mildly supersolar by a few tenths of dex for three clusters, tending to gradually increase from ~+0.1-0.2 at [Fe/H] ~-1 to ~+0.3 at [Fe/H] ~ -2.5. This result connects reasonably well with the [K/Fe] trend of disk stars (-1 < [Fe/H]) and that of extremely metal-poor stars (-4 <[Fe/H] < -2.5). That is, [K/Fe] appears to continue a gradual increase from [Fe/H]~0 toward a lower metallicity regime down to [Fe/H]~-3, where a broad maximum of [K/Fe]~+0.3-0.4 is attained, possibly followed by a slight downturn at [Fe/H]<~-3.
The globular cluster HP~1 is projected at only 3.33 degrees from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe
We present a chemical composition analysis of 36 giants in the nearby mildy metal-poor (<[Fe/H]> = -1.18) CN-bimodal globular cluster M4. Confronted with a cluster that has large and variable interstellar extinction across the cluster face, we combin
Unevolved metal poor stars are the witness of the early evolution of the Galaxy. The determination of their detailed chemical composition is an important tool to understand the chemical history of our Galaxy. The study of their chemical composition c
We present a chemical composition analysis of 36 giant stars in mildly metal-poor globular cluster M5. In comparing the M5 results to those obtained in M4, a cluster previously considered to be a ``twin in age, metallicity and chemical composition, w
We present a chemical composition analysis of 36 giant stars in the mildly metal-poor globular cluster M5 (NGC 5904). The analysis makes use of high resolution data acquired at the Keck I telescope as well as a re-analysis of high resolution spectra