Let $K$ denote a locally compact commutative hypergroup, $L^1(K)$ the hypergroup algebra, and $alpha$ a real-valued hermitian character of $K$. We show that $K$ is $alpha$-amenable if and only if $L^1(K)$ is $alpha$-left amenable. We also consider the $alpha$-amenability of hypergroup joins and polynomial hypergroups in several variables as well as a single variable.