ترغب بنشر مسار تعليمي؟ اضغط هنا

A Gibbs Sampling Alternative to Reversible Jump MCMC

522   0   0.0 ( 0 )
 نشر من قبل Stephen G. Walker
 تاريخ النشر 2009
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Stephen G. Walker




اسأل ChatGPT حول البحث

This note presents a simple and elegant sampler which could be used as an alternative to the reversible jump MCMC methodology.



قيم البحث

اقرأ أيضاً

In this article, we derive a novel non-reversible, continuous-time Markov chain Monte Carlo (MCMC) sampler, called Coordinate Sampler, based on a piecewise deterministic Markov process (PDMP), which can be seen as a variant of the Zigzag sampler. In addition to proving a theoretical validation for this new sampling algorithm, we show that the Markov chain it induces exhibits geometrical ergodicity convergence, for distributions whose tails decay at least as fast as an exponential distribution and at most as fast as a Gaussian distribution. Several numerical examples highlight that our coordinate sampler is more efficient than the Zigzag sampler, in terms of effective sample size.
Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used to sample complex high-dimensional probability distributions. They rely on a collection of $N$ interacting auxiliary chains targeting temper
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisti cated Markov chain Monte Carlo (MCMC) method, the exchange algorithm (Murray et al., 2006), which requires simulations from the likelihood function at each iteration. The purpose of this paper is to consider an approach to dramatically reduce this computational overhead. To this end we introduce a novel class of algorithms which use realizations of the GRF model, simulated offline, at locations specified by a grid that spans the parameter space. This strategy speeds up dramatically the posterior inference, as illustrated on several examples. However, using the pre-computed graphs introduces a noise in the MCMC algorithm, which is no longer exact. We study the theoretical behaviour of the resulting approximate MCMC algorithm and derive convergence bounds using a recent theoretical development on approximate MCMC methods.
We consider a Bayesian hierarchical version of the normal theory general linear model which is practically relevant in the sense that it is general enough to have many applications and it is not straightforward to sample directly from the correspondi ng posterior distribution. Thus we study a block Gibbs sampler that has the posterior as its invariant distribution. In particular, we establish that the Gibbs sampler converges at a geometric rate. This allows us to establish conditions for a central limit theorem for the ergodic averages used to estimate features of the posterior. Geometric ergodicity is also a key component for using batch means methods to consistently estimate the variance of the asymptotic normal distribution. Together, our results give practitioners the tools to be as confident in inferences based on the observations from the Gibbs sampler as they would be with inferences based on random samples from the posterior. Our theoretical results are illustrated with an application to data on the cost of health plans issued by health maintenance organizations.
230 - L. Martino , V. Elvira , D. Luengo 2015
Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better explora tion of the state space, specially in high-dimensional applications, several schemes employing multiple parallel MCMC chains have been recently introduced. In this work, we describe a novel parallel interacting MCMC scheme, called {it orthogonal MCMC} (O-MCMC), where a set of vertical parallel MCMC chains share information using some horizontal MCMC techniques working on the entire population of current states. More specifically, the vertical chains are led by random-walk proposals, whereas the horizontal MCMC techniques employ independent proposals, thus allowing an efficient combination of global exploration and local approximation. The interaction is contained in these horizontal iterations. Within the analysis of different implementations of O-MCMC, novel schemes in order to reduce the overall computational cost of parallel multiple try Metropolis (MTM) chains are also presented. Furthermore, a modified version of O-MCMC for optimization is provided by considering parallel simulated annealing (SA) algorithms. Numerical results show the advantages of the proposed sampling scheme in terms of efficiency in the estimation, as well as robustness in terms of independence with respect to initial values and the choice of the parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا