ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Gravitational Lensing as a Probe of Gravity, Dark-Matter and Super-Massive Black Holes

401   0   0.0 ( 0 )
 نشر من قبل L. V. E. Koopmans
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.V.E. Koopmans




اسأل ChatGPT حول البحث

Whereas considerable effort has been afforded in understanding the properties of galaxies, a full physical picture, connecting their baryonic and dark-matter content, super-massive black holes, and (metric) theories of gravity, is still ill-defined. Strong gravitational lensing furnishes a powerful method to probe gravity in the central regions of galaxies. It can (1) provide a unique detection-channel of dark-matter substructure beyond the local galaxy group, (2) constrain dark-matter physics, complementary to direct-detection experiments, as well as metric theories of gravity, (3) probe central super-massive black holes, and (4) provide crucial insight into galaxy formation processes from the dark matter point of view, independently of the nature and state of dark matter. To seriously address the above questions, a considerable increase in the number of strong gravitational-lens systems is required. In the timeframe 2010-2020, a staged approach with radio (e.g. EVLA, e-MERLIN, LOFAR, SKA phase-I) and optical (e.g. LSST and JDEM) instruments can provide 10^(2-4) new lenses, and up to 10^(4-6) new lens systems from SKA/LSST/JDEM all-sky surveys around ~2020. Follow-up imaging of (radio) lenses is necessary with moderate ground/space-based optical-IR telescopes and with 30-50m telescopes for spectroscopy (e.g. TMT, GMT, ELT). To answer these fundamental questions through strong gravitational lensing, a strong investment in large radio and optical-IR facilities is therefore critical in the coming decade. In particular, only large-scale radio lens surveys (e.g. with SKA) provide the large numbers of high-resolution and high-fidelity images of lenses needed for SMBH and flux-ratio anomaly studies.



قيم البحث

اقرأ أيضاً

We study gravitational lensing of gravitational waves from compact object binaries as a probe of compact dark matter (DM) objects such as primordial black holes. Assuming a point mass lens, we perform parameter estimation of lensed gravitational wave signals from compact object binaries to determine the detectability of the lens with ground based laser interferometers. Then, considering binary populations that LIGO-Virgo has been probing, we derive a constraint on the abundance of compact DM from non-observation of lensed events. We find that the LIGO-Virgo observations imply that compact objects heavier than $M_l = 50M_odot$ can not constitute all DM and less than $15%$ of DM can be in compact objects heavier than $M_l = 200M_odot$. We also show that the DM fraction in compact objects can be probed by LIGO in its final sensitivity for $M_l > 20M_odot$ reaching $0.7%$ of the DM abundance at $M_l > 100M_odot$, and by ET for $M_l > 0.4M_odot$ reaching DM fraction as low as $3times 10^{-5}$ at $M_l > 20M_odot$.
Compact dark matter has been efficiently constrained in the M <~ 10 M_sun mass range by null searches for microlensing of stars in nearby galaxies. Here we propose to probe the mass range M >~ 10 M_sun by seeking echoes in gamma-ray-burst light curve s induced by strong lensing. We show that strong gravitational lensing of gamma ray bursts (GRBs) by massive compact halo objects (MACHOs) generates superimposed GRB images with a characteristic time delay of >~ 1 ms for M >~ 10 M_sun. Using dedicated simulations to capture the relevant phenomenology of the GRB prompt emission, we calculate the signal-to-noise ratio required to detect GRB lensing events as a function of the flux ratio and time delay between the lensed images. We then analyze existing data from the Fermi/GBM and Swift/BAT instruments to assess their constraining power on the compact dark matter fraction f_DM. We find that this data is noise limited, and therefore localization-based masking of background photons is a key ingredient. Future observatories with better sensitivity will be able to probe down to the f_ DM >~ 1% level across the 10 M_sun <~ M <~ 1000 M_sun mass range.
We show that a subdominant component of dissipative dark matter resembling the Standard Model can form many intermediate-mass black hole seeds during the first structure formation epoch. We also observe that, in the presence of this matter sector, th e black holes will grow at a much faster rate with respect to the ordinary case. These facts can explain the observed abundance of supermassive black holes feeding high-redshift quasars. The scenario will have interesting observational consequences for dark substructures and gravitational wave production.
In this paper we present a new scenario where massive Primordial Black Holes (PBH) are produced from the collapse of large curvature perturbations generated during a mild waterfall phase of hybrid inflation. We determine the values of the inflaton po tential parameters leading to a PBH mass spectrum peaking on planetary-like masses at matter-radiation equality and producing abundances comparable to those of Dark Matter today, while the matter power spectrum on scales probed by CMB anisotropies agrees with Planck data. These PBH could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and micro-lensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultra-luminous X-rays sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a swiss-cheese like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.
Although the dark matter is usually assumed to be some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to $10^{16}$ - $10^{17},$g, $10^{20}$ - $ 10^{24},$g and $10$ - $10^{3},M_{odot}$. The last possibility is contentious but of special interest in view of the recent detection of black-hole mergers by LIGO/Virgo. PBHs might have important consequences and resolve various cosmological conundra even if they have only a small fraction of the dark-matter density. In particular, those larger than $10^{3},M_{odot}$ could generate cosmological structures through the seed or Poisson effect, thereby alleviating some problems associated with the standard cold dark-matter scenario, and sufficiently large PBHs might provide seeds for the supermassive black holes in galactic nuclei. More exotically, the Planck-mass relics of PBH evaporations or stupendously large black holes bigger than $10^{12},M_{odot}$ could provide an interesting dark component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا