ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter Structures in the Universe: Prospects for Optical Astronomy in the Next Decade

132   0   0.0 ( 0 )
 نشر من قبل Phil Marshall
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cold Dark Matter theory of gravitationally-driven hierarchical structure formation has earned its status as a paradigm by explaining the distribution of matter over large spans of cosmic distance and time. However, its central tenet, that most of the matter in the universe is dark and exotic, is still unproven; the dark matter hypothesis is sufficiently audacious as to continue to warrant a diverse battery of tests. While local searches for dark matter particles or their annihilation signals could prove the existence of the substance itself, studies of cosmological dark matter in situ are vital to fully understand its role in structure formation and evolution. We argue that gravitational lensing provides the cleanest and farthest-reaching probe of dark matter in the universe, which can be combined with other observational techniques to answer the most challenging and exciting questions that will drive the subject in the next decade: What is the distribution of mass on sub-galactic scales? How do galaxy disks form and bulges grow in dark matter halos? How accurate are CDM predictions of halo structure? Can we distinguish between a need for a new substance (dark matter) and a need for new physics (departures from General Relativity)? What is the dark matter made of anyway? We propose that the central tool in this program should be a wide-field optical imaging survey, whose true value is realized with support in the form of high-resolution, cadenced optical/infra-red imaging, and massive-throughput optical spectroscopy.



قيم البحث

اقرأ أيضاً

Cosmological observations offer unique and robust avenues for probing the fundamental nature of dark matter particles-they broadly test a range of compelling theoretical scenarios, often surpassing or complementing the reach of terrestrial and other experiments. We discuss observational and theoretical advancements that will play a pivotal role in realizing a strong program of cosmological searches for the identity of dark matter in the coming decade. Specifically, we focus on measurements of the cosmic-microwave-background anisotropy and spectral distortions, and tracers of structure (such as the Lyman-$alpha$ forest, galaxies, and the cosmological 21-cm signal).
(Abridged) The Truth and Reconciliation Commission of Canada published its calls to action in 2015 with 94 recommendations. Many of these 94 recommendations are directly related to education, language, and culture, some of which the Canadian Astronom y community can address and contribute to as part of reconciliation. The Canadian Astronomy community has an additional obligation since it benefits from facilities on Indigenous territories across Canada and the world. Furthermore, Indigenous people are still underrepresented at all levels in Canadian astronomy. The purpose of this Community Paper is to develop recommendations for the Canadian astronomy community to support Indigenous inclusion in the science community, support Indigenous learning by developing Indigenous-based learning materials and facilitate access to professionals and science activities, and to recognize and acknowledge the great contributions of Indigenous communities to our science activities. As part of this work we propose the ten following recommendations for CASCA as an organization and throughout this Community Paper we will include additional recommendations for individuals: astronomers, students and academics.
We present a review of the current state of the art of cosmological dark matter simulations, with particular emphasis on the implications for dark matter detection efforts and studies of dark energy. This review is intended both for particle physicis ts, who may find the cosmological simulation literature opaque or confusing, and for astro-physicists, who may not be familiar with the role of simulations for observational and experimental probes of dark matter and dark energy. Our work is complementary to the contribution by M. Baldi in this issue, which focuses on the treatment of dark energy and cosmic acceleration in dedicated N-body simulations. Truly massive dark matter-only simulations are being conducted on national supercomputing centers, employing from several billion to over half a trillion particles to simulate the formation and evolution of cosmologically representative volumes (cosmic scale) or to zoom in on individual halos (cluster and galactic scale). These simulations cost millions of core-hours, require tens to hundreds of terabytes of memory, and use up to petabytes of disk storage. The field is quite internationally diverse, with top simulations having been run in China, France, Germany, Korea, Spain, and the USA. Predictions from such simulations touch on almost every aspect of dark matter and dark energy studies, and we give a comprehensive overview of this connection. We also discuss the limitations of the cold and collisionless DM-only approach, and describe in some detail efforts to include different particle physics as well as baryonic physics in cosmological galaxy formation simulations, including a discussion of recent results highlighting how the distribution of dark matter in halos may be altered. We end with an outlook for the next decade, presenting our view of how the field can be expected to progress. (abridged)
178 - Gustavo Yepes 2013
We review how dark matter is distributed in our local neighbourhood from an observational and theoretical perspective. We will start by describing first the dark matter halo of our own galaxy and in the Local Group. Then we proceed to describe the da rk matter distribution in the more extended area known as the Local Universe. Depending on the nature of dark matter, numerical simulations predict different abundances of substructures in Local Group galaxies, in the number of void regions and in the abundance of low rotational velocity galaxies in the Local Universe. By comparing these predictions with the most recent observations, strong constrains on the physical properties of the dark matter particles can be derived. We devote particular attention to the results from the Constrained Local UniversE Simulations (CLUES) project, a special set of simulations whose initial conditions are constrained by observational data from the Local Universe. The resulting simulations are designed to reproduce the observed structures in the nearby universe. The CLUES provides a numerical laboratory for simulating the Local Group of galaxies and exploring the physics of galaxy formation in an environment designed to follow the observed Local Universe. It has come of age as the numerical analogue of Near-Field Cosmology.
The standard $Lambda$ Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approx imation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant $H_0$ value, the $sigma_8 - S_8$ tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth, that will be of crucial importance to address all these questions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا