ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure of CeCoIn5 from angle-resolved photoemission spectroscopy I: Comparison to LDA

158   0   0.0 ( 0 )
 نشر من قبل A. Koitzsch
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the low-energy electronic structure of the heavy fermion superconductor CeCoIn5 by angle-resolved photoemission and band structure calculations. We measured the Fermi surface and energy distribution maps along the high-symmetry directions at hn = 100 eV and T = 25 K. The compound has quasi two-dimensional Fermi surface sheets centered at the M-A line of the Brillouin zone. The band structure calculations have been carried out within the local density approximation where the 4f electrons have been treated either localized or itinerant. We discuss the comparison to the experimental data and the implications for the nature of the 4f electrons at the given temperature.



قيم البحث

اقرأ أيضاً

We have investigated the low-energy electronic structure of the heavy fermion superconductor CeCoIn5 by angle-resolved photoemission. We focus on the dispersion and the peak width of the prominent quasi-two-dimensional Fermi surface sheet at the corn er of the Brillouin zone as a function of temperature along certain k-directions with a photon energy of hn = 100 eV. We find slight changes of the Fermi vector and an anomalous broadening of the peak width when the Fermi energy is approached. Additionally we performed resonant ARPES experiments with hn = 121 eV. A flat f-derived band is observed with a distinct temperature dependence and a k-dependent spectral weight. These results, including both off- and on-resonant measurements, fit qualitatively to a two level mixing model derived from the Periodic Anderson Model.
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $Gamma$-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.
One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (T_c). It was found in FeSe that the lattice strain leads to a drastic increase in T_c, accompanied by suppression of n ematic order. By angle-resolved photoemission spectroscopy on tensile- or compressive-strained and strain-free FeSe, we experimentally show that the in-plane strain causes a marked change in the energy overlap (DeltaE_{h-e}) between the hole and electron pockets in the normal state. The change in DeltaE_{h-e} modifies the Fermi-surface volume, leading to a change in T_c. Furthermore, the strength of nematicity is also found to be characterized by DeltaE_{h-e}. These results suggest that the key to understanding the phase diagram is the fermiology and interactions linked to the semimetallic band overlap.
We present a soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu2P2. The observed electronic structure is in good agreement with density functional theory (DFT) calculations. Howeve r, it is significantly different from its counterpart in high-temperature superconducting Fe-pnictides. In particular the bandwidth renormalization present in the Fe-pnictides (~2 - 3) is negligible in LaRu2P2 even though the mass enhancement is similar in both systems. Our results suggest that the superconductivity in LaRu2P2 has a different origin with respect to the iron pnictides. Finally we demonstrate that the increased probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is essential in determining the bulk electronic structure in the experiment.
196 - L. X. Yang , B. P. Xie , Y. Zhang 2010
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surfac e volume, both the bulk and the surface contributions are identified. We find that a bulk band moves toward high binding energies below structural transition, and shifts smoothly across the spin density wave transition by about 25 meV. Our data suggest the band reconstruction may play a crucial role in the spin density wave transition, and the structural transition is driven by the short range magnetic order. For the surface states, both the LaO-terminated and FeAs-terminated components are revealed. Certain small band shifts are verified for the FeAs-terminated surface states in the spin density wave state, which is a reflection of the bulk electronic structure reconstruction. Moreover, sharp quasiparticle peaks quickly rise at low temperatures, indicating of drastic reduction of the scattering rate. A kink structure in one of the surface band is shown to be possibly related to the electron-phonon interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا